Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_2_a3, author = {Elke Wolf}, title = {Composition followed by differentiation between weighted {Bergman} spaces and weighted {Banach} spaces of holomorphic functions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--35}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/} }
TY - JOUR AU - Elke Wolf TI - Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 29 EP - 35 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/ LA - en ID - BASM_2014_2_a3 ER -
%0 Journal Article %A Elke Wolf %T Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 29-35 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/ %G en %F BASM_2014_2_a3
Elke Wolf. Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 29-35. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/
[1] Bierstedt K. D., Bonet J., Galbis A., “Weighted spaces of holomorphic functions on balanced domains”, Michigan Math. J., 40:2 (1993), 271–297 | DOI | MR | Zbl
[2] Bierstedt K. D., Bonet J., Taskinen J., “Associated weights and spaces of holomorphic functions”, Studia Math., 127:2 (1998), 137–168 | MR | Zbl
[3] Bierstedt K. D., Meise R., Summers W. H., “A projective description of weighted inductive limits”, Trans. Am. Math. Soc., 272:1 (1982), 107–160 | DOI | MR | Zbl
[4] Bierstedt K. D., Summers W. H., “Biduals of weighted Banach spaces of holomorphic functions”, J. Austral. Math. Soc. Ser. A, 54 (1993), 70–79 | DOI | MR | Zbl
[5] Cowen C., MacCluer B., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995 | MR | Zbl
[6] Duren P., Schuster A., Bergman spaces, Mathematical Surveys and Monographs, 100, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[7] Lusky W., “On the structure of $Hv_0(D)$ and $hv_0(D)$”, Math. Nachr., 159 (1992), 279–289 | DOI | MR | Zbl
[8] Shapiro J. H., Composition Operators and Classical Function Theory, Springer, 1993 | MR | Zbl
[9] Shields A. L., Williams D. L., “Bounded porjections, duality and multipliers in spaces of harmonic functions”, J. Reine Angew. Math., 299/300 (1978), 256–279 | MR | Zbl
[10] Wolf E., “Differences of composition oprators between weighted Bergman spaces and weighted Banach spaces of holomorphic functions”, Glasgow Math. J., 52:2 (2010), 325–332 | DOI | MR | Zbl