Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let ϕ be an analytic self-map of the open unit disk D in the complex plane. Such a map induces through composition a linear composition operator Cϕ:ffϕ. We are interested in the combination of Cϕ weith the differentiation operator D, that is in the operator DCϕ:fϕ(fϕ) acting between weighted Bergman spaces and weighted Banach spaces of holomorphic functions.
@article{BASM_2014_2_a3,
     author = {Elke Wolf},
     title = {Composition followed by differentiation between weighted {Bergman} spaces and weighted {Banach} spaces of holomorphic functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--35},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/}
}
TY  - JOUR
AU  - Elke Wolf
TI  - Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 29
EP  - 35
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/
LA  - en
ID  - BASM_2014_2_a3
ER  - 
%0 Journal Article
%A Elke Wolf
%T Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 29-35
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/
%G en
%F BASM_2014_2_a3
Elke Wolf. Composition followed by differentiation between weighted Bergman spaces and weighted Banach spaces of holomorphic functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 29-35. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a3/

[1] Bierstedt K. D., Bonet J., Galbis A., “Weighted spaces of holomorphic functions on balanced domains”, Michigan Math. J., 40:2 (1993), 271–297 | DOI | MR | Zbl

[2] Bierstedt K. D., Bonet J., Taskinen J., “Associated weights and spaces of holomorphic functions”, Studia Math., 127:2 (1998), 137–168 | MR | Zbl

[3] Bierstedt K. D., Meise R., Summers W. H., “A projective description of weighted inductive limits”, Trans. Am. Math. Soc., 272:1 (1982), 107–160 | DOI | MR | Zbl

[4] Bierstedt K. D., Summers W. H., “Biduals of weighted Banach spaces of holomorphic functions”, J. Austral. Math. Soc. Ser. A, 54 (1993), 70–79 | DOI | MR | Zbl

[5] Cowen C., MacCluer B., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995 | MR | Zbl

[6] Duren P., Schuster A., Bergman spaces, Mathematical Surveys and Monographs, 100, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[7] Lusky W., “On the structure of $Hv_0(D)$ and $hv_0(D)$”, Math. Nachr., 159 (1992), 279–289 | DOI | MR | Zbl

[8] Shapiro J. H., Composition Operators and Classical Function Theory, Springer, 1993 | MR | Zbl

[9] Shields A. L., Williams D. L., “Bounded porjections, duality and multipliers in spaces of harmonic functions”, J. Reine Angew. Math., 299/300 (1978), 256–279 | MR | Zbl

[10] Wolf E., “Differences of composition oprators between weighted Bergman spaces and weighted Banach spaces of holomorphic functions”, Glasgow Math. J., 52:2 (2010), 325–332 | DOI | MR | Zbl