Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_2_a2, author = {A. P. Pobegailo}, title = {Interpolating {B\'ezier} spline curves with local control}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {18--28}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a2/} }
A. P. Pobegailo. Interpolating B\'ezier spline curves with local control. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 18-28. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a2/
[1] Chuan Sun, Huanxi Zhao, “Generating fair, $C^2$ continuous splines by blending conics”, Computers Graphics, 33:2 (2009), 173–180 | DOI
[2] Hartmann E., “Parametric $G^n$ blending of curves and surfaces”, The Visual Computer, 17:1 (2001), 1–13 | DOI | Zbl
[3] Jakubiak J., Leite F. T., Rodrigues R. C., “A two-step algorithm of smooth spline generation on Riemannian manifolds”, Journal of Computational and Applied Mathematics, 194:2 (2006), 177–191 | DOI | MR | Zbl
[4] Liska R., Shashkov M., Swartz B., Smoothly blending successive circular interpolants in two and three dimensions, Tech. Rep. LA-UR 98-4969, LANL, 1998
[5] Meek D. S., Walton D. J., “Blending two parametric curves”, Computer-Aided Design, 41:6 (2009), 423–431 | DOI
[6] Overhauser A. W., Analytic Definition of Curves and Surfaces by Parabolic Blending, Tech. Rep. SL68-40, Ford Motor Company Scientific Laboratory, 1968
[7] Pobegailo A. P., “Local interpolation with weight functions for variable-smoothness curve design”, Computer-Aided Design, 23:8 (1991), 579–582 | DOI | Zbl
[8] Pobegailo A. P., “Geometric modeling of curves using weighted linear and circular segments”, The Visual Computer, 8:4 (1992), 241–245 | DOI
[9] Pobegailo A. P., “$C^n$ interpolation on smooth manifolds with one-parameter transformations”, Computer-Aided Design, 28:12 (1996), 973–979 | DOI
[10] Rogers D. F., Adams J. A., Mathematical elements for computer graphics, McGraw-Hill, 1989; The Visual Computer, 8:4 (1992), 241–245 | DOI
[11] Séquin C. H., Kiha Lee, Jane Yen, “Fair, $G^2$- and $C^2$-continuous circle splines for the interpolation of sparse data points”, Computer-Aided Design, 37:2 (2005), 201–211 | DOI
[12] Szilvási-Nagy M., Vendel T. P., “Generating curves and swept surfaces by blended circles”, Computer Aided Geometric Design, 17:2 (2000), 197–206 | DOI | MR
[13] Wenz H.-J., “Interpolation of curve data by blended generalized circles”, Computer Aided Geometric Design, 13:8 (1996), 673–680 | DOI | MR | Zbl
[14] Wiltsche A., “Blending curves”, Journal for Geometry and Graphics, 9:1 (2005), 67–75 | MR | Zbl
[15] Zavjalov Y. S., Leus V. A., Skorospelov V. A., Splines in Engineering Geometry, Maschinostroenie, Moscow, 1985