On a~class of weighted composition operators on Fock space
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let Tϕ be the Toeplitz operator defined on the Fock space La2(C) with symbol ϕL(C). Let for λC, kλ(z)=eλ¯z2|λ|24, the normalized reproducing kernel at λ for the Fock space La2(C) and tα(z)=zα, z,αC. Define the weighted composition operator Wα on La2(C) as (Wαf)(z)=kα(z)(ftα)(z). In this paper we have shown that if M and H are two bounded linear operators from La2(C) into itself such that MTψH=Tψtα for all ψL(C), then M and H must be constant multiples of the weighted composition operator Wα and its adjoint respectively.
@article{BASM_2014_2_a0,
     author = {Namita Das},
     title = {On a~class of weighted composition operators on {Fock} space},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--8},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a0/}
}
TY  - JOUR
AU  - Namita Das
TI  - On a~class of weighted composition operators on Fock space
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 3
EP  - 8
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a0/
LA  - en
ID  - BASM_2014_2_a0
ER  - 
%0 Journal Article
%A Namita Das
%T On a~class of weighted composition operators on Fock space
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 3-8
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a0/
%G en
%F BASM_2014_2_a0
Namita Das. On a~class of weighted composition operators on Fock space. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2014), pp. 3-8. https://geodesic-test.mathdoc.fr/item/BASM_2014_2_a0/

[1] Ahlfors L. V., Complex Analysis, McGraw-Hill, 1979 | MR | Zbl

[2] Barria J., Halmos P. R., “Asymptotic Toeplitz operators”, Trans. Amer. Math. Soc., 273 (1982), 621–630 | DOI | MR | Zbl

[3] Brown A., Halmos P. R., “Algebraic properties of Toeplitz operators”, J. Reine Angew. Math., 213 (1964), 89–102 | MR

[4] Englis M., “Density of algebras generated by Toeplitz operators on Bergman spaces”, Arkiv for Matematik, 30 (1992), 227–243 | DOI | MR | Zbl

[5] Rudin W., Real and complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987 | MR | Zbl