Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_1_a7, author = {Eugene Kuznetsov and Serghei Botnari}, title = {Invariant transformations of loop transversals.~1a. {The} case of automorphism}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {113--116}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a7/} }
TY - JOUR AU - Eugene Kuznetsov AU - Serghei Botnari TI - Invariant transformations of loop transversals.~1a. The case of automorphism JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 113 EP - 116 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a7/ LA - en ID - BASM_2014_1_a7 ER -
%0 Journal Article %A Eugene Kuznetsov %A Serghei Botnari %T Invariant transformations of loop transversals.~1a. The case of automorphism %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 113-116 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a7/ %G en %F BASM_2014_1_a7
Eugene Kuznetsov; Serghei Botnari. Invariant transformations of loop transversals.~1a. The case of automorphism. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 113-116. https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a7/
[1] Baer R., “Nets and groups”, Trans. Amer. Math. Soc., 46 (1939), 110–141 | DOI | MR | Zbl
[2] Belousov V., Foundations of quasigroup and loop theory, Nauka, Moscow, 1967 (in Russian) | MR | Zbl
[3] Kuznetsov E., “Transversals in groups. 1. Elementary properties”, Quasigroups and related systems, 1:1 (1994), 22–42 | MR | Zbl
[4] Kuznetsov E., “Transversals in groups. 2. Loop transversals in a group by the same subgroup”, Quasigroups and related systems, 6 (1999), 1–12 | MR
[5] Kuznetsov E., “Transversals in groups. 4. Derivation construction”, Quasigroups and related systems, 9 (2002), 67–84 | MR | Zbl
[6] Kuznetsov E., Botnari S., “Invariant transformations of loop transversals. 1. The case of isomorphism”, Bulletin of the Academy of Sciences of Moldova, Mathematics, 2010, no. 1(62), 65–76 | MR | Zbl