On the number of group topologies on countable groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a countable group G admits a non-discrete Hausdorff group topology, then the lattice of all group topologies of the group G admits: – continuum c of non-discrete metrizable group topologies such that sup{τ1,τ2} is the discrete topology for any two of these topologies; – two to the power of continuum of coatoms in the lattice of all group topologies.
@article{BASM_2014_1_a6,
     author = {V. I. Arnautov and G. N. Ermakova},
     title = {On the number of group topologies on countable groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {101--112},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a6/}
}
TY  - JOUR
AU  - V. I. Arnautov
AU  - G. N. Ermakova
TI  - On the number of group topologies on countable groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 101
EP  - 112
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a6/
LA  - en
ID  - BASM_2014_1_a6
ER  - 
%0 Journal Article
%A V. I. Arnautov
%A G. N. Ermakova
%T On the number of group topologies on countable groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 101-112
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a6/
%G en
%F BASM_2014_1_a6
V. I. Arnautov; G. N. Ermakova. On the number of group topologies on countable groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 101-112. https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a6/

[1] Arnautov V. I., Ermakova G. N., “On the number of metrizable group topologies on countable groups”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2013, no. 2(72)–3(73), 17–26

[2] Bourbaki N., Topologie generale, Moskva, 1958 (in Russian)

[3] Engelking R., General topology, Moskva, 1986 (in Russian) | MR