Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2014_1_a3, author = {Ion Grama and Jean-Marie Tricot and Jean-Fran\c{c}ois Petiot}, title = {Estimation of the extreme survival probabilities from censored data}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {33--62}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/} }
TY - JOUR AU - Ion Grama AU - Jean-Marie Tricot AU - Jean-François Petiot TI - Estimation of the extreme survival probabilities from censored data JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2014 SP - 33 EP - 62 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/ LA - en ID - BASM_2014_1_a3 ER -
%0 Journal Article %A Ion Grama %A Jean-Marie Tricot %A Jean-François Petiot %T Estimation of the extreme survival probabilities from censored data %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2014 %P 33-62 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/ %G en %F BASM_2014_1_a3
Ion Grama; Jean-Marie Tricot; Jean-François Petiot. Estimation of the extreme survival probabilities from censored data. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 33-62. https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/
[1] Aalen O. O., “Nonparametric inference in connection with multiple decrements models”, Scand. J. Statist., 3 (1976), 15–27 | MR | Zbl
[2] Andersen P. K., Borgan Ø., Gill R. D., Keiding N., Statistical models based on counting processes, Springer series in statistics, Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[3] Bickel P. J., Klaassen C. A., Ritov Y., Wellner J. A., Efficient and adaptive estimation for semiparametric models, The Johns Hopkins University Press, 1993 | MR
[4] Cox D. R., “Regression models and life tables”, J. Roy. Statist. Soc. Ser. B, 34 (1972), 187–220 | MR | Zbl
[5] Dress H., “Optimal rates of convergence for estimates of the extreme value index”, Ann. Statist., 26 (1998), 434–448 | DOI | MR
[6] Escobar A., Meeker W., “A rewiew of accelerated test models”, Statistical Science, 21 (2006), 552–577 | DOI | MR | Zbl
[7] Fleming T., Harrington D., Counting processes and survival analysis, Wiley, 1991 | MR | Zbl
[8] Grama I., Spokoiny V., “Statistics of extremes by oracle estimation”, Ann. Statist., 36 (2008), 1619–1648 | DOI | MR | Zbl
[9] Grama I., Tricot J.-M., Petiot J.-F., “Estimation of survival probabilities by adjusting a Cox model to the tail”, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 807–811 | DOI | MR | Zbl
[10] Hall P., “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc. Ser. B, 44 (1982), 37–42 | MR | Zbl
[11] Hall P., Welsh A. H., “Best attainable rates of convergence for estimates of parameters of regular variation”, Ann. Statist., 12 (1984), 1079–1084 | DOI | MR | Zbl
[12] Hall P., Welsh A. H., “Adaptive estimates of regular variation”, Ann. Statist., 13 (1985), 331–341 | DOI | MR | Zbl
[13] Kalbfleisch J. D., Prentice R. L., The Statistical analysis of failure time data, Wiley, 2002 | MR | Zbl
[14] Kaplan E. I., Meier P., “Nonparametric estimation from incomplete observation”, J. Amer. Statist. Assoc., 53 (1958), 457–481 | DOI | MR | Zbl
[15] Kiefer J., Wolfowitz J., “Consitency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters”, Ann. Math. Statist., 27 (1956), 887–906 | DOI | MR | Zbl
[16] Klein J. P., Moeschberger M. L., Survival analysis: techniques for censored and truncated data, Springer, 2003
[17] Meier P., Karrison T., Chappell R., Xie H., “The price of Kaplan–Meier”, Journal of the American Statistical Association, 99 (2004), 890–896 | DOI | MR | Zbl
[18] Miller R., “What price Kaplan–Meier?”, Biometrics, 39 (1983), 1077–1081 | DOI | MR | Zbl
[19] Nelson W. B., “Hazard plotting for incomplete failure data”, J. Qual. Technol., 1 (1969), 27–52
[20] Nelson W. B., “Theory and applications of hazard plotting for censored failure data”, Technometrics, 14 (1972), 945–965 | DOI
[21] Tseng Y.-K., Hsieh F., Wang J.-L., “Joint modeling of accelerated failure time and longitudinal data”, Biometrica, 92 (2005), 587–603 | DOI | MR | Zbl
[22] Wei L. J., “The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis”, Statistics in Medicine, 11 (1992), 1871–1879 | DOI