Estimation of the extreme survival probabilities from censored data
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 33-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kaplan–Meier nonparametric estimator has become a standard tool for estimating a survival time distribution in a right censoring schema. However, if the censoring rate is high, this estimator does not provide a reliable estimation of the extreme survival probabilities. In this paper we propose to combine the nonparametric Kaplan–Meier estimator and a parametric-based model into one construction. The idea is to fit the tail of the survival function with a parametric model while for the remaining to use the Kaplan–Meier estimator. A procedure for the automatic choice of the location of the tail based on a goodness-of-fit test is proposed. This technique allows us to improve the estimation of the survival probabilities in the mid and long term. We perform numerical simulations which confirm the advantage of the proposed method.
@article{BASM_2014_1_a3,
     author = {Ion Grama and Jean-Marie Tricot and Jean-Fran\c{c}ois Petiot},
     title = {Estimation of the extreme survival probabilities from censored data},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--62},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/}
}
TY  - JOUR
AU  - Ion Grama
AU  - Jean-Marie Tricot
AU  - Jean-François Petiot
TI  - Estimation of the extreme survival probabilities from censored data
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2014
SP  - 33
EP  - 62
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/
LA  - en
ID  - BASM_2014_1_a3
ER  - 
%0 Journal Article
%A Ion Grama
%A Jean-Marie Tricot
%A Jean-François Petiot
%T Estimation of the extreme survival probabilities from censored data
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2014
%P 33-62
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/
%G en
%F BASM_2014_1_a3
Ion Grama; Jean-Marie Tricot; Jean-François Petiot. Estimation of the extreme survival probabilities from censored data. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2014), pp. 33-62. https://geodesic-test.mathdoc.fr/item/BASM_2014_1_a3/

[1] Aalen O. O., “Nonparametric inference in connection with multiple decrements models”, Scand. J. Statist., 3 (1976), 15–27 | MR | Zbl

[2] Andersen P. K., Borgan Ø., Gill R. D., Keiding N., Statistical models based on counting processes, Springer series in statistics, Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[3] Bickel P. J., Klaassen C. A., Ritov Y., Wellner J. A., Efficient and adaptive estimation for semiparametric models, The Johns Hopkins University Press, 1993 | MR

[4] Cox D. R., “Regression models and life tables”, J. Roy. Statist. Soc. Ser. B, 34 (1972), 187–220 | MR | Zbl

[5] Dress H., “Optimal rates of convergence for estimates of the extreme value index”, Ann. Statist., 26 (1998), 434–448 | DOI | MR

[6] Escobar A., Meeker W., “A rewiew of accelerated test models”, Statistical Science, 21 (2006), 552–577 | DOI | MR | Zbl

[7] Fleming T., Harrington D., Counting processes and survival analysis, Wiley, 1991 | MR | Zbl

[8] Grama I., Spokoiny V., “Statistics of extremes by oracle estimation”, Ann. Statist., 36 (2008), 1619–1648 | DOI | MR | Zbl

[9] Grama I., Tricot J.-M., Petiot J.-F., “Estimation of survival probabilities by adjusting a Cox model to the tail”, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 807–811 | DOI | MR | Zbl

[10] Hall P., “On some simple estimates of an exponent of regular variation”, J. Roy. Statist. Soc. Ser. B, 44 (1982), 37–42 | MR | Zbl

[11] Hall P., Welsh A. H., “Best attainable rates of convergence for estimates of parameters of regular variation”, Ann. Statist., 12 (1984), 1079–1084 | DOI | MR | Zbl

[12] Hall P., Welsh A. H., “Adaptive estimates of regular variation”, Ann. Statist., 13 (1985), 331–341 | DOI | MR | Zbl

[13] Kalbfleisch J. D., Prentice R. L., The Statistical analysis of failure time data, Wiley, 2002 | MR | Zbl

[14] Kaplan E. I., Meier P., “Nonparametric estimation from incomplete observation”, J. Amer. Statist. Assoc., 53 (1958), 457–481 | DOI | MR | Zbl

[15] Kiefer J., Wolfowitz J., “Consitency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters”, Ann. Math. Statist., 27 (1956), 887–906 | DOI | MR | Zbl

[16] Klein J. P., Moeschberger M. L., Survival analysis: techniques for censored and truncated data, Springer, 2003

[17] Meier P., Karrison T., Chappell R., Xie H., “The price of Kaplan–Meier”, Journal of the American Statistical Association, 99 (2004), 890–896 | DOI | MR | Zbl

[18] Miller R., “What price Kaplan–Meier?”, Biometrics, 39 (1983), 1077–1081 | DOI | MR | Zbl

[19] Nelson W. B., “Hazard plotting for incomplete failure data”, J. Qual. Technol., 1 (1969), 27–52

[20] Nelson W. B., “Theory and applications of hazard plotting for censored failure data”, Technometrics, 14 (1972), 945–965 | DOI

[21] Tseng Y.-K., Hsieh F., Wang J.-L., “Joint modeling of accelerated failure time and longitudinal data”, Biometrica, 92 (2005), 587–603 | DOI | MR | Zbl

[22] Wei L. J., “The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis”, Statistics in Medicine, 11 (1992), 1871–1879 | DOI