Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2013_2_a13, author = {Alina Alb Lupa\c{s}}, title = {Certain differential superordinations using a~multiplier transformation and {Ruscheweyh} derivative}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {119--131}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a13/} }
TY - JOUR AU - Alina Alb Lupaş TI - Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2013 SP - 119 EP - 131 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a13/ LA - en ID - BASM_2013_2_a13 ER -
%0 Journal Article %A Alina Alb Lupaş %T Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2013 %P 119-131 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a13/ %G en %F BASM_2013_2_a13
Alina Alb Lupaş. Certain differential superordinations using a~multiplier transformation and Ruscheweyh derivative. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 119-131. https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a13/
[1] Alb Lupaş A., “Certain differential subordinations using Salagean and Ruscheweyh operators”, Acta Universitatis Apulensis, 29 (2012), 125–129 | MR | Zbl
[2] Alb Lupaş A., “Certain differential subordinations using a generalized Salagean operator and Ruscheweyh operator”, Journal of Mathematics and Applications, 33 (2010), 67–72 | MR
[3] Alb Lupaş Alina, “A note on a certain subclass of analytic functions defined by multiplier transformation”, Journal of Computational Analysis and Applications, 12:1-B (2010), 369–373 | MR | Zbl
[4] Alb Lupaş Alina, “Certain differential superordinations using Sălăgean and Ruscheweyh operators”, Analele Universităţii din Oradea, Fascicola Matematica, 17:2 (2010), 203–210 | MR
[5] Alb Lupaş Alina, “Certain differential superordinations using a generalized Sălăgean and Ruscheweyh operators”, Acta Universitatis Apulensis, 25 (2011), 31–40 | MR | Zbl
[6] Al-Oboudi F. M., “On univalent functions defined by a generalized Sălăgean operator”, Ind. J. Math. Math. Sci., 25 (2004), 1429–1436 | DOI | MR | Zbl
[7] Cătaş A., “On certain class of $p$-valent functions defined by new multiplier transformations”, Proceedings Book of the International Symposium on Geometric Function Theory and Applications (August 20–24, 2007, TC Istanbul Kultur University, Turkey), 241–250
[8] Miller S. S., Mocanu P. T., “Subordinants of Differential Superordinations”, Complex Variables, 48:10 (2003), 815–826 | DOI | MR | Zbl
[9] Ruscheweyh St., “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49 (1975), 109–115 | DOI | MR | Zbl
[10] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, Berlin, 1983, 362–372 | DOI | MR