Examples of quasitopological groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 111-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct several examples of completely regular submetrizable quasitopological groups with slightly different combinations of properties, in particular, a countable quasitopological group G with countable π-weight, countable tightness, countable δ-character, but not first-countable, and a countable quasitopological group P with countable π-weight, countable tightness, but of uncountable δ-character.
@article{BASM_2013_2_a12,
     author = {Alexander V. Arhangel'skii and Mitrofan M. Choban},
     title = {Examples of quasitopological groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {111--118},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a12/}
}
TY  - JOUR
AU  - Alexander V. Arhangel'skii
AU  - Mitrofan M. Choban
TI  - Examples of quasitopological groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 111
EP  - 118
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a12/
LA  - en
ID  - BASM_2013_2_a12
ER  - 
%0 Journal Article
%A Alexander V. Arhangel'skii
%A Mitrofan M. Choban
%T Examples of quasitopological groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 111-118
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a12/
%G en
%F BASM_2013_2_a12
Alexander V. Arhangel'skii; Mitrofan M. Choban. Examples of quasitopological groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 111-118. https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a12/

[1] Arhangel'skii A. V., “An addition theorem for the weight of sets lying in bicompacta”, Dokl. Akad. Nauk SSSR, 126 (1959), 239–241 | MR

[2] Arhangel'skii A. V., “More on remainders close to metrizable spaces”, Topology and Appl., 154 (2007), 1084–1088 | DOI | MR | Zbl

[3] Arhangel'skii A. V., “Two types of remainders of topological groups”, Comment. Math. Univ. Carolinae, 49:1 (2008), 119–126 | MR | Zbl

[4] Arhangel'skii A. V., “The Baire property in remainders of topological groups and other results”, Comment. Math. Univ. Carolinae, 50:2 (2009), 273–279 | MR | Zbl

[5] Arhangel'skii A. V., Choban M. M., “Remainders of rectifiable spaces”, Topology and its Appl., 157 (2010), 789–799 | DOI | MR | Zbl

[6] Arhangel'skii A. V., Choban M. M., “Completeness type properties of semitopological groups, and the theorems of Montgomery and Ellis”, Topology Proceedings, 37:1 (2011), 33–60 | MR | Zbl

[7] Arhangel'skii A. V., Tkachenko M. G., Topological groups and related structures, Atlantis Press, Amsterdam–Paris, 2008 | MR | Zbl

[8] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[9] Henriksen M., Isbel J. R., “Some properties of compactifications”, Duke Math. Jour., 25 (1958), 83–106 | DOI | MR

[10] Shapirovskij B. E., “On $\pi$-character and $\pi$-weight in bicompacta”, Dokl. Akad. Nauk SSSR, 223:4 (1975), 799–802 | MR | Zbl