Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2013_2_a1, author = {Mati Abel}, title = {Liouville's theorem for vector-valued functions}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {5--16}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a1/} }
Mati Abel. Liouville's theorem for vector-valued functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2013), pp. 5-16. https://geodesic-test.mathdoc.fr/item/BASM_2013_2_a1/
[1] Abel Mart, Abel Mati, “On galbed algebras and galbed spaces”, Bull. Greek Math. Soc., 52 (2006), 9–23 | MR | Zbl
[2] Abel Mati, “Galbed Gelfand-Mazur algebras”, Topological algebras and their applications, Contemp. Math., 341, Amer. Math. Soc., Providence, RI, 2004, 17–24 | DOI | MR | Zbl
[3] Abel Mati, “Topological algebras with galbed von Neumann bornology”, International Conference on Topological Algebras and their Applications (ICTAA), Math. Stud. (Tartu), 4, Est. Math. Soc., Tartu, 2008, 18–28 | MR
[4] Allan G., Introduction to Banach spaces and algebras, Prepared for publication and with a preface by H. Garth Dales, Oxford Graduate Texts in Math., 20, Oxford University Press, Oxford, 2011 | MR | Zbl
[5] Akkar M., “Dualité entre la bornologie d'une algèbre topologique ou bornologique et certaines propriétés particulières de ses fonctions puissances”, C. R. Acad. Sci. Paris Sér. A–B, 285:7 (1977), A509–A512 | MR | Zbl
[6] Arens R., “Linear topological division algebras”, Bull. Amer. Math. Soc., 53 (1947), 623–630 | DOI | MR | Zbl
[7] Balachandran V. K., Topological Algebras, North-Holland Math. Studies, 185, Elsevier, Amsterdam, 2000 | MR | Zbl
[8] Hogbe-Nlend H., Bornologies and Functional Analysis, North-Holland Math. Stud., 26, North-Holland, Amsterdam, 1977 | MR | Zbl
[9] Jarchow H., Locally Convex Spaces, Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981 | DOI | MR | Zbl
[10] Köthe G., Topological vector spaces, v. I, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl
[11] Turpin M. P., Sur une classe d'algèbres topologiques generalisant les algèbres localement bornees, Ph. D. Thesis, Faculty of sciences, University of Grenoble, 1966
[12] Turpin Ph., “Espaces et opérateurs exponentiellement galbés”, Séminaire Pierre Lelong (Analyse), Année–1974, Lecture Notes in Math., 474, Springer, Berlin, 1973, 48–62 | DOI | MR
[13] Turpin Ph., Waelbroeck L., “Intégration et fonctions holomorphes dans les espaces localement pseudo-convexes”, C. R. Acad. Sci. Paris Sér. A–B, 267 (1968), A160–A162 | MR | Zbl
[14] Waelbroeck L., “Continuous inverse locally pseudo-convex algebras”, Summer School Topol. Algebr. Theory, Bruges, 1966, 128–185 | Zbl
[15] Waelbroeck L., Topological vector spaces and algebras, Lecture Notes in Math., 230, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl