Semilattice decompositions of trioids
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 130-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all semilattice congruences on an arbitrary trioid and define the least semilattice congruence on this trioid. We also show that every trioid is a semilattice of s-simple subtrioids.
@article{BASM_2013_1_a5,
     author = {Anatolii V. Zhuchok},
     title = {Semilattice decompositions of trioids},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {130--134},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a5/}
}
TY  - JOUR
AU  - Anatolii V. Zhuchok
TI  - Semilattice decompositions of trioids
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 130
EP  - 134
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a5/
LA  - en
ID  - BASM_2013_1_a5
ER  - 
%0 Journal Article
%A Anatolii V. Zhuchok
%T Semilattice decompositions of trioids
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 130-134
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a5/
%G en
%F BASM_2013_1_a5
Anatolii V. Zhuchok. Semilattice decompositions of trioids. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 130-134. https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a5/

[1] Loday J.-L., Ronco M. O., “Trialgebras and families of polytopes”, Contemp. Math., 346 (2004), 369–398 | DOI | MR | Zbl

[2] Novelli J.-C., Thibon J. Y., “Construction of dendriform trialgebras”, C. R. Math. Acad. Sci. Paris, 342:6 (2006), 365–369 | DOI | MR | Zbl

[3] Casas J. M., “Trialgebras and Leibniz 3-algebras”, Boleten dela Sociedad Matematica Mexicana, 12:2 (2006), 165–178 | MR | Zbl

[4] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[5] Zhuchok A. V., “Dimonoids”, Algebra and Logic, 50:4 (2011), 323–340 | DOI | MR | Zbl

[6] Zhuchok A. V., “Free trioids”, Bulletin of University of Kyiv, Ser. Physics and Mathematics, 4 (2010), 23–26 (In Ukrainian) | Zbl

[7] Zhuchok A. V., “Tribands of subtrioids”, Proc. Inst. Applied Math. and Mech., 21 (2010), 98–106 | Zbl

[8] Zhuchok A. V., “Some congruences on trioids”, Journal of Mathematical Sciences, 187:2 (2012), 138–145 | DOI | MR | Zbl

[9] Yamada M., “On the greatest semilattice decomposition of a semigroup”, Kodai Math. Sem. Rep., 7 (1955), 59–62 | DOI | MR | Zbl

[10] Zhuchok A. V., “The least semilattice congruence on a dimonoid”, Bulletin of University of Kyiv, Ser. Physics and Mathematics, 3 (2009), 22–24 (In Ukrainian) | Zbl

[11] Clifford A. H., “Bands of semigroups”, Proc. Amer. Math. Soc., 5 (1954), 499–504 | DOI | MR | Zbl