Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2013_1_a3, author = {J. C. Art\'es and J. Llibre and D. Schlomiuk and N. Vulpe}, title = {Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than~2}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {72--124}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a3/} }
TY - JOUR AU - J. C. Artés AU - J. Llibre AU - D. Schlomiuk AU - N. Vulpe TI - Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than~2 JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2013 SP - 72 EP - 124 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a3/ LA - en ID - BASM_2013_1_a3 ER -
%0 Journal Article %A J. C. Artés %A J. Llibre %A D. Schlomiuk %A N. Vulpe %T Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than~2 %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2013 %P 72-124 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a3/ %G en %F BASM_2013_1_a3
J. C. Artés; J. Llibre; D. Schlomiuk; N. Vulpe. Geometric configurations of singularities for quadratic differential systems with total finite multiplicity lower than~2. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 72-124. https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a3/
[1] Artés J. C., Llibre J., “Quadratic {H}amiltonian vector fields”, J. Differential Equations, 107 (1994), 80–95 | DOI | MR | Zbl
[2] Artés J. C., Llibre J., Schlomiuk D., “The geometry of quadratic differential systems with a weak focus of second order”, International J. of Bifurcation and Chaos, 16 (2006), 3127–3194 | DOI | MR | Zbl
[3] Artés J. C., Llibre J., Schlomiuk D., Vulpe N., “From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields”, Rocky Mountain J. of Math., (accepted)
[4] Artés J. C., Llibre J., Vulpe N. I., “Singular points of quadratic systems: A complete classification in the coefficient space $\mathbb R^{12}$”, International J. of Bifurcation and Chaos, 18 (2008), 313–362 | DOI | MR | Zbl
[5] Artés J. C., Llibre J., Vulpe N. I., “Complete geometric invariant study of two classes of quadratic systems”, Electron. J. Differential Equations, 2012 (2012), 9, 35 pp. | MR
[6] Artés J. C., Llibre J., Vulpe N., “Quadratic systems with an integrable saddle: A complete classification in the coefficient space $\mathbb R^{12}$”, Nonlinear Analysis, 75 (2012), 5416–5447 | DOI | MR | Zbl
[7] Baltag V. A., “Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems”, Bull. Acad. Ştiinţe. Repub. Moldova, Mat., 2003, no. 2(42), 13–27 | MR | Zbl
[8] Baltag V. A., Vulpe N. I., “Affine-invariant conditions for determining the number and multiplicity of singular points of quadratic differential systems”, Bull. Acad. Ştiinţe. Repub. Moldova, Mat., 1993, no. 1(11), 39–48 (in Russian) | MR | Zbl
[9] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5, 1997, 455–471 | MR | Zbl
[10] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24 (1901), 1–88 | DOI | MR
[11] Bularas D., Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: A study via the translation invariants, Report No 96-90, URL: , Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996 ftp://ftp.its.tudelft.nl/publications/techreports/1996/DUT-TWI-96-90.ps.gz
[12] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of differential equations”, Bull. Acad. Ştiinţe. Repub. Moldova, Mat., 2003, no. 2(42), 69–86 | MR | Zbl
[13] Coll B., Qualitative study of some classes of vector fields in the plane, Ph. D., Universitat Autónoma de Barcelona, 1987, 34 pp.
[14] Coppel W. A., “A survey of quadratic systems”, J. Differential Equations, 2 (1966), 293–304 | DOI | MR | Zbl
[15] Dumortier F., “Singularities of vector fields on the plane”, J. Differential Equations, 23 (1977), 53–106 | DOI | MR | Zbl
[16] Dumortier F., Fiddelaers P., “Quadratic models for generic local 3-parameter bifurcations on the plane”, Trans. Am. Math. Soc., 326 (1991), 101–126 | MR | Zbl
[17] Dumortier F., Llibre J., Artés J. C., Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, New York–Berlin, 2008 | MR
[18] Gonzalez Velasco E. A., “Generic properties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143 (1969), 201–222 | DOI | MR | Zbl
[19] Grace J. H., Young A., The algebra of invariants, Stechert, New York, 1941
[20] Jiang Q., Llibre J., “Qualitative classification of singular points”, Qualitative Theory of Dynamical Systems, 6 (2005), 87–167 | DOI | MR | Zbl
[21] Llibre J., Schlomiuk D., “Geometry of quadratic differential systems with a weak focus of third order”, Canad. J. of Math., 56 (2004), 310–343 | DOI | MR | Zbl
[22] Olver P. J., Classical Invariant Theory, London Math. Soc. Student Texts, 44, Cambridge University Press, 1999 | MR
[23] Nikolaev I., Vulpe N., “Topological classification of quadratic systems at infinity”, J. London Math. Soc., 2 (1997), 473–488 | DOI | MR
[24] Pal J., Schlomiuk D., “Summing up the dynamics of quadratic Hamiltonian systems with a center”, Canad. J. Math., 56 (1997), 583–599 | DOI | MR
[25] Popa M. N., Applications of algebraic methods to differential systems, Piteşti Univers., The Flower Power Edit., Romania, 2004 | MR | Zbl
[26] Roussarie R., “On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields”, Bol. Soc. Bras. Mat., 17:2 (1986), 67–101 | DOI | MR | Zbl
[27] Roussarie R., “Smoothness property for bifurcation diagrams”, Publicacions Matemàtiques, 56 (1997), 243–268 | DOI | MR
[28] Schlomiuk D., “Algebraic particular integrals, integrability and the problem of the center”, Trans. Amer. Math. Soc., 338 (1993), 799–841 | DOI | MR | Zbl
[29] Schlomiuk D., “Basic algebro-qeometric concepts in the study of planar polynomial vector fields”, Publicacions Mathemàtiques, 41 (1997), 269–295 | DOI | MR | Zbl
[30] Schlomiuk D., Pal J., “On the geometry in the neighborhood of infinity of quadratic differential phase portraits with a weak focus”, Qualitative Theory of Dynamical Systems, 2 (2001), 1–43 | DOI | MR | Zbl
[31] Schlomiuk D., Vulpe N. I., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl
[32] Schlomiuk D., Vulpe N. I., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain Journal of Mathematics, 38:6 (2008), 1–60 | DOI | MR
[33] Schlomiuk D., Vulpe N. I., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four”, Bull. Acad. Ştiinţe. Repub. Moldova, Mat., 2008, no. 1(56), 27–83 | MR | Zbl
[34] Schlomiuk D., Vulpe N. I., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20 (2008), 737–775 | DOI | MR | Zbl
[35] Schlomiuk D., Vulpe N. I., “Global classification of the planar Lotka–Volterra differential system according to their configurations of invariant straight lines”, J. Fixed Point Theory Appl., 8 (2010), 177–245 | DOI | MR | Zbl
[36] Schlomiuk D., Vulpe N. I., “The Global Topological classification of the Lotka–Volterra quadratic differential systems”, Electron. J. Differential Equations, 2012 (2012), 64, 69 pp. | MR | Zbl
[37] Schlomiuk D., Vulpe N. I., “Applications of symbolic calculations and polynomial invariants to the classification of singularities of differential systems”, Lecture Notes in Computer Science, 8136, Springer, Berlin, 2013, 340–354 | DOI | Zbl
[38] Sibirskii K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 | MR
[39] Vulpe N., “Characterization of the finite weak singularities of quadratic systems via invariant theory”, Nonlinear Analysis. Theory, Methods and Applications, 74:4 (2011), 6553–6582 | DOI | MR | Zbl
[40] Vulpe N. I., “Affine-invariant conditions for the topological discrimination of quadratic systems with a center”, Differential Equations, 19 (1983), 273–280 | MR | Zbl
[41] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl
[42] Vulpe N., Lupan M., “Quadratic systems with dicritical points”, Bull. Acad. Ştiinţe. Repub. Moldova, Mat., 1994, no. 3(16), 52–60 | MR | Zbl
[43] Żoła̧dek H., “Quadratic systems with center and their perturbations”, J. Differential Equations, 109 (1994), 223–273 | DOI | MR