Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2013_1_a2, author = {M. N. Popa and V. V. Pricop}, title = {Applications of algebraic methods in solving the center-focus problem}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {45--71}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a2/} }
TY - JOUR AU - M. N. Popa AU - V. V. Pricop TI - Applications of algebraic methods in solving the center-focus problem JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2013 SP - 45 EP - 71 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a2/ LA - en ID - BASM_2013_1_a2 ER -
%0 Journal Article %A M. N. Popa %A V. V. Pricop %T Applications of algebraic methods in solving the center-focus problem %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2013 %P 45-71 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a2/ %G en %F BASM_2013_1_a2
M. N. Popa; V. V. Pricop. Applications of algebraic methods in solving the center-focus problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 45-71. https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a2/
[1] Center and focus problem, Mathematical Encyclopedia, (in Russian) http://dic.academic.ru/dic.nsf/enc_mathematics/6088/TsENTRA
[2] Poincaré H., “Mémoire sur les courbes définies par une équation différentielle”, J. Math. Pures et Appl. Sér. 3, 7 (1881), 375–422; J. Math. Pures et Appl. Sér. 3, 8 (1882), 251–296; J. Math. Pures et Appl. Sér. 4, 1 (1885), 167–244; J. Math. Pures et Appl. Sér. 4, 2 (1886), 151–217
[3] Liapunoff A., “Problème général de la stabilité du mouvement”, Annales de la Faculté des Sciences de Touluose Sér. 2, 9 (1907), 204–477; Reproduction: Annals of Mathematics Studies, 17, Princeton University Press, Princeton, 1947; Reprinted: Kraus Reprint Corporation, New York, 1965
[4] Sadovskii A. P., Polynomial ideals and manifolds, BSU, Minsk, 2008 (in Russian)
[5] Sibirsky K. S., Introduction to the algebraic theory of invariants of differential equations, Translated from Russian, Nonlinear Science: Theory and applications, Manchester University Press, Manchester, 1988 | MR | Zbl
[6] Vulpe N. I., Polynomial bases of comitants of differential systems and their application in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl
[7] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl
[8] Amer. Math. Soc. Transl., 100 (1954), 397–413 | MR | MR | Zbl | Zbl
[9] Dulac H., “Determination et integration d'une certaine classe d'equations differentielles ayant pour point singulier un center”, Bull. Sciences Math. Ser. 2, 32:1 (1908), 230–252 | MR | Zbl
[10] Sibirsky K. S., “On the number of limit cycles in the neighborhood of a singular point”, Differentsialnye Uravnenya, 1:1 (1965), 53–66 (in Russian) | MR
[11] Zolâdek H., “On certain generalization of the Bautin's theorem”, Nonlinearity, 7 (1994), 273–279 | DOI | MR | Zbl
[12] Graf V., Bothmer H. C., Kröker J., “Focal Values of Plane Cubic Centers”, Qual. Theory Dyn. Syst., 9 (2010), 319–324 | DOI | MR | Zbl
[13] Gurevich G. B., Foundation of the Theory of Algebraic Invariants, Noordoff, Groningen, 1964 | MR | Zbl
[14] Sibirsky K. S., Method of invariants in the qualitative theory of differential equations, RIO AN Moldavian SSR, Kishinev, 1968 (in Russian) | MR
[15] Arzhantsev I. V., Graded Algebras and 14-th Hilbert Problem, Publishers MCCME, Moscow, 2009, 63 pp. (in Russian)
[16] Alekseev V. G., The theory of rational invariants of binary forms, Iuriev, 1899 (in Russian)
[17] Macari P. M., Popa M. N., Vulpe N. I., “The integer algebraic basis of center-affine invariants of homogeneous cubic differential system”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 1996, no. 1(20), 48–55 (in Russian) | MR
[18] Vulpe N. I., “The integer algebraic basis of center-affine invariants of homogeneous cubic differential system”, Mat. issled., 55, Shtiintsa, Kishinev, 1980, 37–45 (in Russian) | MR
[19] Sibirsky K. S., Lunchevich V. A., “Quadratic null systems of differential equations”, Differentsialnye Uravnenya, 25:6 (1989), 1056–1058 (in Russian) | MR
[20] Baltag V. A., The topological classification of cubic null systems of differential equations, Preprint, ASM, Institute of Mathematics, Chişinău, 1989, 59 pp. (in Russian) | MR
[21] Springer T. A., Invariant theory, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[22] Ufnarovskij V. A., “Combinatorial and Asymptotic Methods in Algebra”, Algebra, v. VI, Encyclopedia of Mathematical Sciences, 57, Springer, 1995, 1–196 | DOI | MR
[23] Popa M. N., Pricop V. V., Applications of algebras to the center-focus problem, Preprint No 0007, , ASM, Institute of Mathematics and Computer Science, Chişinău, 2011, 59 pp. http://www.math.md/files/download/epublications/PreprintPopaMPricopV.pdf
[24] Popa M., Pricop V., “About Generating function on the problem of center and focus”, Actual Problems of Mathematics and Informatics, Scientific Conference dedicated to the 80-th anniversary of the foundation of the Tiraspol State University and of the Faculty of Physics, Mathematics and Information Tehnologies (September 24–25, 2010, Chişinău), Communications, 126–127
[25] Popa M., Pricop V., “Combinatorial and asymptotic aspects to the center-focus problem”, The 18th Conference on Applied and Industrial Mathematics, CAIM 2010 (October 14–17, 2010, Iaşi, Romania), Abstracts, 74
[26] Popa M. N., Pricop V. V., “Applications of generating functions and Hilbert series to the center-focus problem”, The $8^{th}$ International Algebraic Conference in Ukraine (July 5–12, 2011, Lugansk Taras Shevchenko National University, Lugansk, Ukraine), Book of abstracts, 10
[27] Popa M. N., Pricop V. V., “About the maximal number of algebraically independent focal pseudo-quantities of the system $s(1,3)$”, Mathematics and IT: Research and Education, MITRE-2011 (August 22–25, 2011, Chişinău), Abstracts, 94
[28] Pricop V. V., “The differential system $s(1,4)$ and algebraically independent focal pseudo-quantities”, The 19th Conference on Applied and Industrial Mathematics, CAIM 2011 (September 22–25, 2011, Iaşi, Romania), Abstracts, 15–16
[29] Popa M. N., Pricop V. V., “The Krull dimension in solving the center-focus problem for polynomial differential systems”, Lie algebras, algebraic groups and invariant theory, The III-th School-Conference dedicated to the 75-th anniversary of E. B. Vinberg (June 25–30, 2012, Tolyatti, Russian Federation), Abstracts, 41–43
[30] Popa M. N., “Applications of algebraic methods to the center-focus problem”, The 20th Conference on Applied and Industrial Mathematics dedicated to academician Mitrofan M. Ciobanu, CAIM 2012 (August 22–25, 2012, Chişinău), Communications, 184–186
[31] Pricop V. V., “The numerical upper bound of the number of algebraically independent focal pseudo-quantities of the differential system $s(1,5)$”, The 20th Conference on Applied and Industrial Mathematics dedicated to academician Mitrofan M. Ciobanu, CAIM 2012 (August 22–25, 2012, Chişinău), Communications, 190–192
[32] Popa M. N., Pricop V. V., “The Hilbert series and Lie algebras in solving the center-focus problem”, International Mathematical Conference on occasion to the 70th year anniversary of Professor Vladimir Kirichenko (June 13–19, 2012, Mykolayiv V. O. Sukhomlynsky National University, Mykolayiv, Ukraine), Book of abstracts, 114
[33] Popa M. N., Pricop V. V., “About a solution of the center-focus problem”, Erugin readings–2013, XV International Scientific Conference on Differential Equations (May 13–16, 2013, Yanka Kupala State University of Grodno, Grodno, Republic of Belarus), Abstracts, Part I, 2013, 69–70