Asymptotic stability of infinite-dimensional nonautonomous dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 11-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to the study of the problem of asymptotic stability for general non-autonomous dynamical systems (both with continuous and discrete time). We study the relation between different types of attractions and asymptotic stability in the framework of general non-autonomous dynamical systems. Specially we investigate the case of almost periodic systems, i.e., when the base (driving system) is almost periodic. We apply the obtained results we apply to different classes of non-autonomous evolution equations: Ordinary Differential Equations, Functional Differential Equations (both with finite retard and neutral type) and Semi-Linear Parabolic Equations.
@article{BASM_2013_1_a1,
     author = {David Cheban},
     title = {Asymptotic stability of infinite-dimensional nonautonomous dynamical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {11--44},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a1/}
}
TY  - JOUR
AU  - David Cheban
TI  - Asymptotic stability of infinite-dimensional nonautonomous dynamical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2013
SP  - 11
EP  - 44
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a1/
LA  - en
ID  - BASM_2013_1_a1
ER  - 
%0 Journal Article
%A David Cheban
%T Asymptotic stability of infinite-dimensional nonautonomous dynamical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2013
%P 11-44
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a1/
%G en
%F BASM_2013_1_a1
David Cheban. Asymptotic stability of infinite-dimensional nonautonomous dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2013), pp. 11-44. https://geodesic-test.mathdoc.fr/item/BASM_2013_1_a1/

[1] Armando D'Anna, “Total Stability Properties for an Almost Periodic Equation by Means of Limiting Equations”, Funkciolaj Ekvacioj, 27 (1984), 201–209 | MR | Zbl

[2] Armando D'Anna, Alfonso Maio, Vinicio Moauro, “Global stability properties by means of limiting equations”, Nonlinear Analysis, 4:2 (1980), 407–410 | DOI | MR | Zbl

[3] Artstein Zvi, “Uniform asymptotic stability via the limiting equations”, Journal of Differential Equations, 27:2 (1978), 172–189 | DOI | MR | Zbl

[4] Boularas Driss, Cheban David, “Asymptototic Stability of Switching Systems”, Electronic Journal of Differential Equations, 21 (2010), 1–18 | MR

[5] Bronsteyn I. U., Extensions of Minimal Transformation Group, Noordhoff, 1979

[6] Caraballo Tomas, Cheban David, “On the Structure of the Global Attractor for Non-autonomous Dynamical Systems with Weak Convergence”, Communications in Pure and Applied Analysis, 11:2 (2012), 809–828 | DOI | MR | Zbl

[7] Cheban D. N., Global Attractors of Non-Autonomous Dissipstive Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004, xxiii+502 pp. | DOI | MR | Zbl

[8] Cheban D. N., “Sell's Conjecture for Non-Autonomous Dynamical Systems”, Nonlinear Analysis: TMA, 75:7 (2012), 3393–3406 | DOI | MR | Zbl

[9] Theory of Functional-Differential Equations, Mir, Moscow, 1984 | MR | MR | Zbl | Zbl

[10] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, New York, 1981 | MR | Zbl

[11] Husemoller D., Fibre Bundles, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | MR

[12] Junji Kato, Taro Yoshizawa, “Remarks on Global Properties in Limiting Equations”, Funkciolaj Ekvacioj, 24 (1981), 363–371 | MR | Zbl

[13] Gordon and Breach Publishers, Luxembourg, 1996

[14] Sell G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971 | MR | Zbl

[15] Shcherbakov B. A., Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Ştiinţa, Chişinău, 1972, 231 pp. (in Russian) | MR | Zbl