Stability analysis of Pareto optimal portfolio of multicriteria investment maximin problem in the H\"older metric
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyzed the stability of a Pareto-optimal portfolio of the multicriteria discrete variant of Markowitz's investment problem with Wald's maximin efficiency criteria. We obtained lower and upper bounds for the stability radius of such portfolio in the case of the Hölder metric lp, 1p, in the three-dimensional space of problem parameters. We also show the attainability of bounds in particular cases.
@article{BASM_2012_3_a6,
     author = {Vladimir Emelichev and Vladimir Korotkov},
     title = {Stability analysis of {Pareto} optimal portfolio of multicriteria investment maximin problem in the {H\"older} metric},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {63--71},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a6/}
}
TY  - JOUR
AU  - Vladimir Emelichev
AU  - Vladimir Korotkov
TI  - Stability analysis of Pareto optimal portfolio of multicriteria investment maximin problem in the H\"older metric
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 63
EP  - 71
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a6/
LA  - en
ID  - BASM_2012_3_a6
ER  - 
%0 Journal Article
%A Vladimir Emelichev
%A Vladimir Korotkov
%T Stability analysis of Pareto optimal portfolio of multicriteria investment maximin problem in the H\"older metric
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 63-71
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a6/
%G en
%F BASM_2012_3_a6
Vladimir Emelichev; Vladimir Korotkov. Stability analysis of Pareto optimal portfolio of multicriteria investment maximin problem in the H\"older metric. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 63-71. https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a6/

[1] Emelichev V., Korotkov V., Kuzmin K., “On stability of a Pareto-optimal solution of a portfolio optimization problem with Savage's minimax risk criteria”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2010, no. 3(64), 35–44 | MR | Zbl

[2] Markowitz H. M., Portfolio selection: efficient diversification of investments, Blackwell, Oxford, 1991

[3] Salo A., Keisler J., Morton A. (eds.), Portfolio decision analysis: improved methods for resource allocation, International series in operations research and management science, Springer, New York, 2011 | DOI

[4] Bronshtein E. M., Kachkaeva M. M., Tulupova E. V., “Control of investment portfolio based on complex quantile risk measures”, Journal of Computer and System Sciences International, 50:1 (2011), 174–180 | DOI | MR | Zbl

[5] Vilensky P. L., Livshiz V. N., Smolyk S. A., Evaluation of investment project effectiveness, Theory and Practice, Moscow, 2008 (in Russian)

[6] Wald A., Statistical decision functions, Wiley, New York, 1950 | MR | Zbl

[7] Emelichev V. A., Kuzmin K. G., “Stability radius of an efficient solution of a vector problem of integer linear programming in the Gölder metric”, Cybernetics and Systems Analysis, 42:4 (2006), 609–614 | DOI | Zbl

[8] Emelichev V. A., Kuz'min K. G., “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | MR | Zbl

[9] Emelichev V. A., Karelkina O. V., “Finite cooperative games: parametrisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation in the Hölder metric”, Discrete Math. Appl., 19:3 (2009), 229–236 | DOI | MR | Zbl

[10] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Stability in the combinatorial vector optimization problems”, Automation and Remote Control, 65:2 (2004), 227–240 | DOI | MR | Zbl

[11] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Dover, New York, 1999 | Zbl