Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2012_3_a4, author = {Rory Biggs and Claudiu C. Remsing}, title = {A note on the affine subspaces of three-dimensional {Lie} algebras}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {45--52}, publisher = {mathdoc}, number = {3}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a4/} }
TY - JOUR AU - Rory Biggs AU - Claudiu C. Remsing TI - A note on the affine subspaces of three-dimensional Lie algebras JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2012 SP - 45 EP - 52 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a4/ LA - en ID - BASM_2012_3_a4 ER -
%0 Journal Article %A Rory Biggs %A Claudiu C. Remsing %T A note on the affine subspaces of three-dimensional Lie algebras %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2012 %P 45-52 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a4/ %G en %F BASM_2012_3_a4
Rory Biggs; Claudiu C. Remsing. A note on the affine subspaces of three-dimensional Lie algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 45-52. https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a4/
[1] Agrachev A. A., Sachkov Y. L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl
[2] Biggs R., Remsing C. C., “A category of control systems”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 20 (2012), 355–368 | MR | Zbl
[3] Biggs R., Remsing C. C., On the equivalence of control systems on Lie groups, Submitted
[4] Biggs R., Remsing C. C., “Control affine systems on semisimple three-dimensional Lie groups”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 59 (2013), 65–80 | MR
[5] Biggs R., Remsing C. C., Control affine systems on solvable three-dimensional Lie groups, I, Submitted
[6] Biggs R., Remsing C. C., “Control affine systems on solvable three-dimensional Lie groups, II”, Note Mat., 33 (2013) (to appear) | MR | Zbl
[7] Ha K. Y., Lee J. B., “Left invariant metrics and curvatures on simply connected three-dimensional Lie groups”, Math. Nachr., 282 (2009), 868–898 | DOI | MR | Zbl
[8] Harvey A., “Automorphisms of the Bianchi model Lie groups”, J. Math. Phys., 20 (1979), 251–253 | DOI | MR
[9] Jakubczyk B., “Equivalence and invariants of nonlinear control systems”, Nonlinear Controllability and Optimal Control, ed. Sussmann H. J., M. Dekker, New York, 1990, 177–218 | MR | Zbl
[10] Jurdjevic V., Geometric Control Theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[11] Jurdjevic V., Sussmann H. J., “Control systems on Lie groups”, J. Differential Equations, 12 (1972), 313–329 | DOI | MR | Zbl
[12] Krasiński A., Behr C. G., Schücking E., Estabrook F. B., Wahlquist H. D., Ellis G. F. R., Jantzen R., Kundt W., “The Bianchi classification in the Schücking–Behr approach”, Gen. Relativity Gravitation, 35 (2003), 475–489 | DOI | MR | Zbl
[13] MacCallum M. A. H., “On the classification of the real four-dimensional Lie algebras”, On Einstein's Path: Essays in Honour of E. Schücking, ed. Harvey A., Springer-Verlag, New York, 1999, 299–317 | DOI | MR | Zbl
[14] Popovych R. O., Boyco V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional Lie algebras”, J. Phys. A, 36 (2003), 7337–7360 | DOI | MR | Zbl
[15] Remsing C. C., “Optimal control and Hamilton-Poisson formalism”, Int. J. Pure Appl. Math., 59 (2010), 11–17 | MR | Zbl
[16] Sachkov Y. L., “Control theory on Lie groups”, J. Math. Sci. (N.Y.), 156 (2009), 381–439 | DOI | MR | Zbl