On Frattini subloops and normalizers of commutative Moufang loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let L be a commutative Moufang loop (CML) with the multiplication group M, and let F(L), F(M) be the Frattini subloop of L and Frattini subgroup of M. It is proved that F(L)=L if and only if F(M)=M, and the structure of this CML is described. The notion of normalizer for subloops in CML is defined constructively. Using this it is proved that if F(L)L, then L satisfies the normalizer condition and that any divisible subgroup of M is an abelian group and serves as a direct factor for M.
@article{BASM_2012_3_a1,
     author = {N. I. Sandu},
     title = {On {Frattini} subloops and normalizers of commutative {Moufang} loops},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {16--27},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a1/}
}
TY  - JOUR
AU  - N. I. Sandu
TI  - On Frattini subloops and normalizers of commutative Moufang loops
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 16
EP  - 27
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a1/
LA  - en
ID  - BASM_2012_3_a1
ER  - 
%0 Journal Article
%A N. I. Sandu
%T On Frattini subloops and normalizers of commutative Moufang loops
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 16-27
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a1/
%G en
%F BASM_2012_3_a1
N. I. Sandu. On Frattini subloops and normalizers of commutative Moufang loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 16-27. https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a1/

[1] Ursu V. I., Covalschi A., “Quasivarities of Commutative Solvable Moufang Loops.”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2007, no. 2(54), 118–124 | MR | Zbl

[2] Sandu N. I., “The commutative Moufang loops with minimum conditions for subloops. I”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2003, no. 3(43), 25–40 | MR

[3] Chernikov S. N., Groups with Features of Subgroup Systems, Nauka, Moscow, 1980 (in Russian)

[4] Sandu N. I., On Frattini subloops and normalizers of commutative Moufang loops, arXiv: 0804.3964v1 | MR

[5] Bruck R. H., A survey of binary systems, Springer Verlag, Berlin–Heidelberg, 1958 | MR | Zbl

[6] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and Loops: Theory and applications, Helderman Verlag, Berlin, 1990 | MR | Zbl

[7] Sandu N. I., “About Centrally Nilpotent Commutative Moufang Loops”, Quasigroups and Loops, Mat. issled., 51, Kishinev, 1979, 145–155 (in Russian) | MR | Zbl

[8] Kargapolov M. I., Merzlyakov Iu. I., Fondations of the theory of groups, Nauka, Moscow, 1972 (in Russian) | Zbl

[9] Sandu N. I., “Medially nilpotent distributive quasigroups and $CH$-quasigroups”, Sibirskii. mat. journal, 2 (1987), 159–170 (in Russian) | MR | Zbl

[10] Fuchs L., Infinite abelian groups, v. 1, Moscow, Mir, 1974 (in Russian) | MR | Zbl