Boundedness for vector-valued multilinear singular integral operator on Lp spaces with variable exponent
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the boundedness for some vector-valued multilinear singular integral operators on Lp spaces with variable exponent by using a sharp estimate of the multilinear operators.
@article{BASM_2012_3_a0,
     author = {Jing Du and Chuangxia Huang and Lanzhe Liu},
     title = {Boundedness for vector-valued multilinear singular integral operator on $L^p$ spaces with variable exponent},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--15},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a0/}
}
TY  - JOUR
AU  - Jing Du
AU  - Chuangxia Huang
AU  - Lanzhe Liu
TI  - Boundedness for vector-valued multilinear singular integral operator on $L^p$ spaces with variable exponent
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 3
EP  - 15
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a0/
LA  - en
ID  - BASM_2012_3_a0
ER  - 
%0 Journal Article
%A Jing Du
%A Chuangxia Huang
%A Lanzhe Liu
%T Boundedness for vector-valued multilinear singular integral operator on $L^p$ spaces with variable exponent
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 3-15
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a0/
%G en
%F BASM_2012_3_a0
Jing Du; Chuangxia Huang; Lanzhe Liu. Boundedness for vector-valued multilinear singular integral operator on $L^p$ spaces with variable exponent. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2012), pp. 3-15. https://geodesic-test.mathdoc.fr/item/BASM_2012_3_a0/

[1] Cohen J., “A sharp estimate for a multilinear singular integral on $R^n$”, Indiana Univ. Math. J., 30 (1981), 693–702 | DOI | MR | Zbl

[2] Cohen J., Gosselin J., “On multilinear singular integral operators on $R^n$”, Studia Math., 72 (1982), 199–223 | MR

[3] Cohen J., Gosselin J., “A BMO estimate for multilinear singular integral operators”, Illinois J. Math., 30 (1986), 445–465 | MR

[4] Coifman R., Meyer Y., Wavelets, Calderón-Zygmund and multilinear operators, Cambridge Studies in Advanced Math., 48, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[5] Cruz-Uribe D., Fiorenza A., Neugebauer C. J., “The maximal function on variable $L^p$ spaces”, Ann. Acad. Fenn. Math., 28 (2003), 223–238 | MR | Zbl

[6] Diening L., “Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$”, Math. Ineql. Appl., 7 (2004), 245–253 | MR | Zbl

[7] Diening L., Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Preprint | MR

[8] Diening L., Ruzicka M., “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 563 (2003), 197–220 | MR | Zbl

[9] Ding Y., Lu S. Z., “Weighted boundedness for a class rough multilinear operators”, Acta Math. Sinica, 17 (2001), 517–526 | DOI | MR | Zbl

[10] Fefferman C., Stein E. M., “Some maximal inequalities”, Amer. J. Math., 93 (1971), 107–115 | DOI | MR | Zbl

[11] Garcia-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, North-Holland Math., 116, Amsterdam, 1985 | MR | Zbl

[12] Hu G. E., Yang D. C., “A variant sharp estimate for multilinear singular integral operators”, Studia Math., 141 (2000), 25–42 | MR | Zbl

[13] Karlovich A. Y., Lerner A. K., “Commutators of singular integrals on generalized $L^p$ spaces with variable exponent”, Publ. Mat., 49:1 (2005), 111–125 | DOI | MR | Zbl

[14] Lerner A. K., “Weighted norm inequalities for the local sharp maximal function”, J. Fourier Anal. Appl., 10 (2004), 214–231 | DOI | MR

[15] Nekvinda A., “Hardy-Littlewood maximal operator on $L^{p(x)}(R^n)$”, Math. Ineql. Appl., 7 (2004), 255–265 | MR | Zbl

[16] Pérez C., “Endpoint estimate for commutators of singular integral operators”, J. Func. Anal., 128 (1995), 163–185 | DOI | MR | Zbl

[17] Pérez C., Pradolini G., “Sharp weighted endpoint estimates for commutators of singular integral operators”, Michigan Math. J., 49 (2001), 23–37 | DOI | MR | Zbl

[18] Pérez C., Trujillo-Gonzalez R., “Sharp weighted estimates for multilinear commutators”, J. London Math. Soc., 65 (2002), 672–692 | DOI | MR | Zbl

[19] Perez C., Trujillo-Gonzalez R., “Sharp weighted estimates for vector-valued singular integral operators and commutators”, Tohoku Math. J., 55 (2003), 109–129 | DOI | MR | Zbl

[20] Stein E. M., Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl