Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2012_2_a7, author = {Valery Dryuma}, title = {The {Ricci-flat} spaces related to the {Navier--Stokes} equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {99--102}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/} }
TY - JOUR AU - Valery Dryuma TI - The Ricci-flat spaces related to the Navier--Stokes equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2012 SP - 99 EP - 102 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/ LA - en ID - BASM_2012_2_a7 ER -
Valery Dryuma. The Ricci-flat spaces related to the Navier--Stokes equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 99-102. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/
[1] Dryuma V., “On spaces related to the Navier–Stokes equation”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2010, no. 3(64), 107–110 | MR
[2] Dryuma V., “The Riemann extensions in theory of differential equations and their applications”, Matematicheskaya fizika, analiz, geometriya, 10 (2003), 307–325 | MR | Zbl
[3] Boccaletti D., Catoni F., Cannata R., Zampetti P., Integrating the geodesic equations in the Schwarzschild and Kerr space-times using Beltrami's “geometrical” method, 3 Apr. 2008, 12 pp., arXiv: gr-qc/0502051v2 | MR