The Ricci-flat spaces related to the Navier--Stokes equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 99-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples of the Riccii-flat metrics associated with the equations of Navier–Stokes are constructed. Their properties are investigated.
@article{BASM_2012_2_a7,
     author = {Valery Dryuma},
     title = {The {Ricci-flat} spaces related to the {Navier--Stokes} equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {99--102},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/}
}
TY  - JOUR
AU  - Valery Dryuma
TI  - The Ricci-flat spaces related to the Navier--Stokes equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 99
EP  - 102
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/
LA  - en
ID  - BASM_2012_2_a7
ER  - 
%0 Journal Article
%A Valery Dryuma
%T The Ricci-flat spaces related to the Navier--Stokes equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 99-102
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/
%G en
%F BASM_2012_2_a7
Valery Dryuma. The Ricci-flat spaces related to the Navier--Stokes equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 99-102. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a7/

[1] Dryuma V., “On spaces related to the Navier–Stokes equation”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2010, no. 3(64), 107–110 | MR

[2] Dryuma V., “The Riemann extensions in theory of differential equations and their applications”, Matematicheskaya fizika, analiz, geometriya, 10 (2003), 307–325 | MR | Zbl

[3] Boccaletti D., Catoni F., Cannata R., Zampetti P., Integrating the geodesic equations in the Schwarzschild and Kerr space-times using Beltrami's “geometrical” method, 3 Apr. 2008, 12 pp., arXiv: gr-qc/0502051v2 | MR