Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2012_2_a4, author = {A. I. Kashu}, title = {On partial inverse operations in the lattice of submodules}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {59--73}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/} }
A. I. Kashu. On partial inverse operations in the lattice of submodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 59-73. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/
[1] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl
[2] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fundamenta Mathematicae, 107:1 (1980), 33–45 | MR | Zbl
[3] Golan J. S., Linear topologies on a ring, Longman Sci. Techn., New York, 1987 | MR | Zbl
[4] Raggi F., Montes J. R., Rincon H., Fernandes-Alonso R., Signoret C., “The lattice structure of preradicals”, Commun. in Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl
[5] Kashu A. I., “Preradicals and characteristic submodules: connections and operations”, Algebra and Discrete Mathematics, 9:2 (2010), 59–75 | MR
[6] Kashu A. I., “On some operations in the lattice of submodules determinined by preradicals”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2011, no. 2(66), 5–16 | MR | Zbl
[7] Kashu A. I., “On inverse operations in the lattices of submodules”, Algebra and Discrete Mathematics, 13:2 (2012), 273–288 | MR | Zbl