On partial inverse operations in the lattice of submodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work two partial operations in the lattice of submodules L(RM) are defined and investigated. They are the inverse operations for ω-product and α-coproduct studied in [6]. This is the continuation of the article [7], in which the similar questions for the operations of α-product and ω-coproduct are investigated. The partial inverse operation of left quotient N/K of N by K with respect to ω-product is introduced and similarly the right quotient N:K of K by N with respect to α-coproduct is defined, where N,KL(RM). The criteria of existence of such quotients are indicated, as well as the different forms of representation, the main properties, the relations with lattice operations in L(RM), the conditions of cancellation and other related questions are elucidated.
@article{BASM_2012_2_a4,
     author = {A. I. Kashu},
     title = {On partial inverse operations in the lattice of submodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {59--73},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On partial inverse operations in the lattice of submodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 59
EP  - 73
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/
LA  - en
ID  - BASM_2012_2_a4
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On partial inverse operations in the lattice of submodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 59-73
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/
%G en
%F BASM_2012_2_a4
A. I. Kashu. On partial inverse operations in the lattice of submodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 59-73. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a4/

[1] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[2] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fundamenta Mathematicae, 107:1 (1980), 33–45 | MR | Zbl

[3] Golan J. S., Linear topologies on a ring, Longman Sci. Techn., New York, 1987 | MR | Zbl

[4] Raggi F., Montes J. R., Rincon H., Fernandes-Alonso R., Signoret C., “The lattice structure of preradicals”, Commun. in Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl

[5] Kashu A. I., “Preradicals and characteristic submodules: connections and operations”, Algebra and Discrete Mathematics, 9:2 (2010), 59–75 | MR

[6] Kashu A. I., “On some operations in the lattice of submodules determinined by preradicals”, Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2011, no. 2(66), 5–16 | MR | Zbl

[7] Kashu A. I., “On inverse operations in the lattices of submodules”, Algebra and Discrete Mathematics, 13:2 (2012), 273–288 | MR | Zbl