Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2012_2_a0, author = {Cristian Ida and Sabin Merche\c{s}an}, title = {Basic cohomology attached to a~basic function of foliated manifolds}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--16}, publisher = {mathdoc}, number = {2}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/} }
TY - JOUR AU - Cristian Ida AU - Sabin Mercheşan TI - Basic cohomology attached to a~basic function of foliated manifolds JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2012 SP - 3 EP - 16 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/ LA - en ID - BASM_2012_2_a0 ER -
%0 Journal Article %A Cristian Ida %A Sabin Mercheşan %T Basic cohomology attached to a~basic function of foliated manifolds %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2012 %P 3-16 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/ %G en %F BASM_2012_2_a0
Cristian Ida; Sabin Mercheşan. Basic cohomology attached to a~basic function of foliated manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 3-16. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/
[1] Bott R., Tu L. W., Differential Forms in Algebraic Topology, Graduate Text in Math., 82, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl
[2] El Kacimi Alaoui A., “Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications”, Compositio Math., 73 (1990), 57–106 | MR | Zbl
[3] El Kacimi Alaoui A., Gmira B., “Stabilité du caractère Kählérien transverse”, Israel J. of Math., 101 (1997), 323–347 | DOI | MR | Zbl
[4] Haddou A. Hassan, “Foliations and Lichnerowicz Basic Cohomology”, International Math. Forum, 2:49 (2007), 2437–2446 | MR | Zbl
[5] Ida C., “A note on the relative Lichnerowicz cohomology”, Proceedings of the Conference RIGA 2011, Riemannian Geom. and Appl., Bucharest, Romania, 2011, 181–186 | MR | Zbl
[6] Ida C., On a Lichnerowicz type cohomology attached to a function, Preprint
[7] Lichnerowicz A., “Les variétés de Poisson et leurs algébres de Lie associées”, J. Differential Geom., 12:2 (1977), 253–300 | MR | Zbl
[8] Miron R., Pop I., Topologie Algebrică. Omologie, Omotopie, Spaţii de Acoperire, Acad. RSR, Bucureşti, 1974 | MR | Zbl
[9] Monnier P., “Computations of Nambu-Poisson cohomologies”, Int. J. Math. Math. Sci., 26:2 (2001), 65–81 | DOI | MR | Zbl
[10] Monnier P., “A cohomology attached to a function”, Diff. Geometry and Applications, 22 (2005), 49–68 | DOI | MR | Zbl
[11] Morrow J., Kodaira K., Complex Manifolds, AMS Chelsea Publ., 1971 | MR
[12] Schweitzer M., Autour de la cohomologie de Bott–Chern, Preprint available at, arXiv: 0709.3528
[13] Tevdoradze Z., “Vertical cohomologies and their application to completely integrable Hamiltonian systems”, Georgian Math. J., 5:5 (1998), 483–500 | DOI | MR | Zbl
[14] Vaisman I., Cohomology and differential forms, M. Dekker Publ. House, New York, 1973 | MR | Zbl
[15] Vaisman I., “Remarkable operators and commutation formulas on locally conformal Kähler manifolds”, Compositio Math., 40:3 (1980), 287–299 | MR | Zbl