Basic cohomology attached to a~basic function of foliated manifolds
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a basic cohomology attached to a basic function of foliated manifolds and in particular, of transversely holomorphic foliations. We also explain how this cohomology depends on the basic function and we study a relative cohomology and a Mayer-Vietoris sequence related to this cohomology. Also, a basic Lichnerowicz cohomology attached to a basic function of a foliated manifold is studied.
@article{BASM_2012_2_a0,
     author = {Cristian Ida and Sabin Merche\c{s}an},
     title = {Basic cohomology attached to a~basic function of foliated manifolds},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--16},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/}
}
TY  - JOUR
AU  - Cristian Ida
AU  - Sabin Mercheşan
TI  - Basic cohomology attached to a~basic function of foliated manifolds
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 3
EP  - 16
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/
LA  - en
ID  - BASM_2012_2_a0
ER  - 
%0 Journal Article
%A Cristian Ida
%A Sabin Mercheşan
%T Basic cohomology attached to a~basic function of foliated manifolds
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 3-16
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/
%G en
%F BASM_2012_2_a0
Cristian Ida; Sabin Mercheşan. Basic cohomology attached to a~basic function of foliated manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2012), pp. 3-16. https://geodesic-test.mathdoc.fr/item/BASM_2012_2_a0/

[1] Bott R., Tu L. W., Differential Forms in Algebraic Topology, Graduate Text in Math., 82, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl

[2] El Kacimi Alaoui A., “Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications”, Compositio Math., 73 (1990), 57–106 | MR | Zbl

[3] El Kacimi Alaoui A., Gmira B., “Stabilité du caractère Kählérien transverse”, Israel J. of Math., 101 (1997), 323–347 | DOI | MR | Zbl

[4] Haddou A. Hassan, “Foliations and Lichnerowicz Basic Cohomology”, International Math. Forum, 2:49 (2007), 2437–2446 | MR | Zbl

[5] Ida C., “A note on the relative Lichnerowicz cohomology”, Proceedings of the Conference RIGA 2011, Riemannian Geom. and Appl., Bucharest, Romania, 2011, 181–186 | MR | Zbl

[6] Ida C., On a Lichnerowicz type cohomology attached to a function, Preprint

[7] Lichnerowicz A., “Les variétés de Poisson et leurs algébres de Lie associées”, J. Differential Geom., 12:2 (1977), 253–300 | MR | Zbl

[8] Miron R., Pop I., Topologie Algebrică. Omologie, Omotopie, Spaţii de Acoperire, Acad. RSR, Bucureşti, 1974 | MR | Zbl

[9] Monnier P., “Computations of Nambu-Poisson cohomologies”, Int. J. Math. Math. Sci., 26:2 (2001), 65–81 | DOI | MR | Zbl

[10] Monnier P., “A cohomology attached to a function”, Diff. Geometry and Applications, 22 (2005), 49–68 | DOI | MR | Zbl

[11] Morrow J., Kodaira K., Complex Manifolds, AMS Chelsea Publ., 1971 | MR

[12] Schweitzer M., Autour de la cohomologie de Bott–Chern, Preprint available at, arXiv: 0709.3528

[13] Tevdoradze Z., “Vertical cohomologies and their application to completely integrable Hamiltonian systems”, Georgian Math. J., 5:5 (1998), 483–500 | DOI | MR | Zbl

[14] Vaisman I., Cohomology and differential forms, M. Dekker Publ. House, New York, 1973 | MR | Zbl

[15] Vaisman I., “Remarkable operators and commutation formulas on locally conformal Kähler manifolds”, Compositio Math., 40:3 (1980), 287–299 | MR | Zbl