Moment analysis of the telegraph random process
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 90-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Goldstein–Kac telegraph process X(t), t>0, on the real line R1 performed by the random motion at finite speed c and controlled by a homogeneous Poisson process of rate λ>0. Using a formula for the moment function μ2k(t) of X(t) we study its asymptotic behaviour, as c,λ and t vary in different ways. Explicit asymptotic formulas for μ2k(t), as k, are derived and numerical comparison of their effectiveness is given. We also prove that the moments μ2k(t) for arbitrary fixed t>0 satisfy the Carleman condition and, therefore, the distribution of the telegraph process is completely determined by its moments. Thus, the moment problem is completely solved for the telegraph process X(t). We obtain an explicit formula for the Laplace transform of μ2k(t) and give a derivation of the the moment generating function based on direct calculations. A formula for the semi-invariants of X(t) is also presented.
@article{BASM_2012_1_a8,
     author = {Alexander D. Kolesnik},
     title = {Moment analysis of the telegraph random process},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {90--107},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a8/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Moment analysis of the telegraph random process
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 90
EP  - 107
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a8/
LA  - en
ID  - BASM_2012_1_a8
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Moment analysis of the telegraph random process
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 90-107
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a8/
%G en
%F BASM_2012_1_a8
Alexander D. Kolesnik. Moment analysis of the telegraph random process. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 90-107. https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a8/

[1] Bartlett M., “Some problems associated with random velocity”, Publ. Inst. Stat. Univ. Paris, 6 (1957), 261–270 | MR | Zbl

[2] Bartlett M., “A note on random walks at constant speed”, Adv. Appl. Prob., 10 (1978), 704–707 | DOI | Zbl

[3] Bateman H., Erdelyi A., Tables of Integral Transforms, v. 1, McGraw-Hill, NY, 1954 | Zbl

[4] Bogachev L., Ratanov N., “Occupation time distributions for the telegraph process”, Stoch. Process. Appl., 121 (2011), 1816–1844 | DOI | MR | Zbl

[5] Cane V., “Random walks and physical processes”, Bull. Intern. Statist. Inst., 42 (1967), 622–640

[6] Cane V., “Diffusion models with relativity effects”, Perspectives in Probability and Statistics, Applied Probability Trust, Sheffield, 1975, 263–273 | MR | Zbl

[7] Di Crescenzo A., “On random motion with velocities alternating at Erlang-distributed random times”, Adv. Appl. Probab., 33 (2001), 690–701 | DOI | MR | Zbl

[8] Di Crescenzo A., Martinucci B., “A damped telegraph random process with logistic stationary distributions”, J. Appl. Probab., 47 (2010), 84–96 | DOI | MR | Zbl

[9] Di Crescenzo A., Martinucci B., “On the effect of random alternating perturbations on hazard rates”, Sci. Math. Japon., 64 (2006), 381–394 | MR | Zbl

[10] Foong S. K., “First-passage time, maximum displacement and Kac's solution of the telegrapher's equation”, Phys. Rev. A, 46 (1992), 707–710 | DOI | MR

[11] Foong S. K., Kanno S., “Properties of the telegrapher's random process with or without a trap”, Stoch. Process. Appl., 53 (2002), 147–173 | DOI | MR

[12] Goldstein S., “On diffusion by discontinuous movements and on the telegraph equation”, Quart. J. Mech. Appl. Math., 4 (1951), 129–156 | DOI | MR | Zbl

[13] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Series and Products, Academic Press, NY, 1980 | Zbl

[14] Iacus S. M., Yoshida N., “Estimation for the discretely observed telegraph process”, Theory Probab. Math. Stat., 78 (2009), 37–47 | DOI | MR

[15] Kabanov Yu. M., “Probabilistic representation of a solution of the telegraph equation”, Theory Probab. Appl., 37 (1992), 379–380 | DOI | MR | Zbl

[16] Kac M., “A stochastic model related to the telegrapher's equation”, Rocky Mountain J. Math., 4 (1974), 497–509 | DOI | MR | Zbl

[17] Kaplan S., “Differential equations in which the Poisson process plays a role”, Bull. Amer. Math. Soc., 70 (1964), 264–267 | DOI | MR

[18] Kisynski J., “On M. Kac's probabilistic formula for the solution of the telegraphist's equation”, Ann. Polon. Math., 29 (1974), 259–272 | MR | Zbl

[19] Kolesnik A. D., “Moments of the Markovian random evolutions in two and four dimensions”, Bull. Acad. Sci. Moldova Ser. Math., 2008, no. 2(57), 68–80 | MR | Zbl

[20] Kolesnik A. D., “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl

[21] Kolesnik A. D., “The equations of Markovian random evolution on the line”, J. Appl. Probab., 35 (1998), 27–35 | DOI | MR | Zbl

[22] Kolesnik A. D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[23] Kolesnik A. D., Turbin A. F., “The equation of symmetric Markovian random evolution in a plane”, Stoch. Process. Appl., 75 (1998), 67–87 | DOI | MR | Zbl

[24] Lachal A., “Cyclic random motions in $\mathbb R^d$-space with $n$ directions”, ESAIM: Probab. Stat., 10 (2006), 277–316 | DOI | MR | Zbl

[25] Masoliver J., Weiss G. H., “First-passage times for a generalized telegrapher's equation”, Physica A, 183 (1992), 537–548 | DOI | MR

[26] Masoliver J., Weiss G. H., “On the maximum displacement of a one-dimensional diffusion process described by the telegrapher's equation”, Physica A, 195 (1993), 93–100 | DOI | Zbl

[27] Orsingher E., “Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws”, Stoch. Process. Appl., 34 (1990), 49–66 | DOI | MR | Zbl

[28] Orsingher E., “Motions with reflecting and absorbing barriers driven by the telegraph equation”, Random Operat. Stoch. Equat., 3 (1995), 9–21 | DOI | MR | Zbl

[29] Pinsky M. A., Lectures on Random Evolution, World Sci., River Edge, NJ, 1991 | MR | Zbl

[30] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series. Special Functions, Nauka, Moscow, 1983 (in Russian) | MR | Zbl

[31] Samoilenko I. V., “Moments of Markov random evolutions”, Ukrain. Math. J., 53 (2001), 1002–1008 | DOI | MR

[32] Stadje W., Zacks S., “Telegraph processes with random velocities”, J. Appl. Probab., 41 (2004), 665–678 | DOI | MR | Zbl

[33] Turbin A. F., Samoilenko I. V., “A probabilistic method for solving the telegraph equation with real-analytic initial conditions”, Ukrain. Math. J., 52 (2000), 1292–1299 | DOI | MR | Zbl