Matrix algorithm for Polling models with PH distribution
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Polling systems provide performance evaluation criteria for a variety of demand-based, multiple-access schemes in computer and communication systems [1]. For studying this systems it is necessary to find their important characteristics. One of the important characteristics of these systems is the k-busy period [2]. In [3] it is showed that analytical results for k-busy period can be viewed as the generalization of classical Kendall functional equation [4]. A matrix algorithm for solving the gene- ralization of classical Kendall functional equation is proposed. Some examples and numerical results are presented.
@article{BASM_2012_1_a6,
     author = {Gheorghe Mishkoy and Udo R. Krieger and Diana Bejenari},
     title = {Matrix algorithm for {Polling} models with {PH} distribution},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {70--80},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/}
}
TY  - JOUR
AU  - Gheorghe Mishkoy
AU  - Udo R. Krieger
AU  - Diana Bejenari
TI  - Matrix algorithm for Polling models with PH distribution
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 70
EP  - 80
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/
LA  - en
ID  - BASM_2012_1_a6
ER  - 
%0 Journal Article
%A Gheorghe Mishkoy
%A Udo R. Krieger
%A Diana Bejenari
%T Matrix algorithm for Polling models with PH distribution
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 70-80
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/
%G en
%F BASM_2012_1_a6
Gheorghe Mishkoy; Udo R. Krieger; Diana Bejenari. Matrix algorithm for Polling models with PH distribution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 70-80. https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/

[1] Vishnevsky V. M., Semenova O. V., Polling Systems: The theory and applications in the broadband wireless networks, Texnocfera, Moscow, 2007 (in Russian)

[2] Rycov V. V., Mishkoy Gh. K., “A new approach for analysis of polling systems”, Proceedings of the International Conference on Control Problems, 2009, 1749–1758

[3] Mishkoy Gh. K., Generalized Priority Systems, Academy of Sciences of Moldova, Stiinta, 2009 (in Russian)

[4] Kendall D. G., “Some problems in the theory of queues”, J. Roy. Statist. Soc. (B), 13:2 (1951), 151–173 | MR

[5] Kriger Udo R., Bejenari D., Mishcoy Gh., “Matrix algorithm for solving Kendall equation in Polling models”, Proceedings of International Conferece on Informational Technologies, Systems and Networks, 2010, 95–102

[6] Marcel Neuts F., Matrix-Geometric Solutions in Stochastic Models, An algorithmic Approach, The Johns Hopkins University Press, Baltimore–London, 1981 | MR