Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2012_1_a6, author = {Gheorghe Mishkoy and Udo R. Krieger and Diana Bejenari}, title = {Matrix algorithm for {Polling} models with {PH} distribution}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {70--80}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/} }
TY - JOUR AU - Gheorghe Mishkoy AU - Udo R. Krieger AU - Diana Bejenari TI - Matrix algorithm for Polling models with PH distribution JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2012 SP - 70 EP - 80 IS - 1 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/ LA - en ID - BASM_2012_1_a6 ER -
%0 Journal Article %A Gheorghe Mishkoy %A Udo R. Krieger %A Diana Bejenari %T Matrix algorithm for Polling models with PH distribution %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2012 %P 70-80 %N 1 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/ %G en %F BASM_2012_1_a6
Gheorghe Mishkoy; Udo R. Krieger; Diana Bejenari. Matrix algorithm for Polling models with PH distribution. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 70-80. https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a6/
[1] Vishnevsky V. M., Semenova O. V., Polling Systems: The theory and applications in the broadband wireless networks, Texnocfera, Moscow, 2007 (in Russian)
[2] Rycov V. V., Mishkoy Gh. K., “A new approach for analysis of polling systems”, Proceedings of the International Conference on Control Problems, 2009, 1749–1758
[3] Mishkoy Gh. K., Generalized Priority Systems, Academy of Sciences of Moldova, Stiinta, 2009 (in Russian)
[4] Kendall D. G., “Some problems in the theory of queues”, J. Roy. Statist. Soc. (B), 13:2 (1951), 151–173 | MR
[5] Kriger Udo R., Bejenari D., Mishcoy Gh., “Matrix algorithm for solving Kendall equation in Polling models”, Proceedings of International Conferece on Informational Technologies, Systems and Networks, 2010, 95–102
[6] Marcel Neuts F., Matrix-Geometric Solutions in Stochastic Models, An algorithmic Approach, The Johns Hopkins University Press, Baltimore–London, 1981 | MR