Conjugate sets of loops and quasigroups. DC-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the set of conjugates (the conjugate set) of a binary quasigroup can contain 1,2,3 or 6 elements. We investigate loops, IP-quasigroups and T-quasigroups with distinct conjugate sets described earlier. We study in more detail the quasigroups all conjugates of which are pairwise distinct (shortly, DC-quasigroups). The criterion of a DC-quasigroup (a DC-IP-quasigroup, a DC-T-quasigroup) is given, the existence of DC-T-quasigroups for any order n5, n6, is proved and some examples of DC-quasigroups are given.
@article{BASM_2012_1_a2,
     author = {G. B. Belyavskaya and T. V. Popovich},
     title = {Conjugate sets of loops and quasigroups. {DC-quasigroups}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {21--31},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a2/}
}
TY  - JOUR
AU  - G. B. Belyavskaya
AU  - T. V. Popovich
TI  - Conjugate sets of loops and quasigroups. DC-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2012
SP  - 21
EP  - 31
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a2/
LA  - en
ID  - BASM_2012_1_a2
ER  - 
%0 Journal Article
%A G. B. Belyavskaya
%A T. V. Popovich
%T Conjugate sets of loops and quasigroups. DC-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2012
%P 21-31
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a2/
%G en
%F BASM_2012_1_a2
G. B. Belyavskaya; T. V. Popovich. Conjugate sets of loops and quasigroups. DC-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2012), pp. 21-31. https://geodesic-test.mathdoc.fr/item/BASM_2012_1_a2/

[1] Belousov V. D., Foundations of the quasigroup and loop theory, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[2] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups and related systems, 13:1 (2005), 25–72 | MR | Zbl

[3] Belousov V. D., Florea I. A., “Quasigroups with the property of invertibility”, Izvestiya of Academy of Sciences Mold.SR, Ser. fiz.-tehn., 1966, no. 1, 3–17 (in Russian) | Zbl

[4] Belyavskaya G., Diordiev A., “Conjugate-orthogonality and the complete multiplication group of a quasigroup”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2009, no. 1(59), 22–30 | MR | Zbl

[5] Belyavskaya G. B., Popovich T. V., “Totally conjugate orthogonal quasigroups and complete graphs”, Fundamental and Applied Mathematics (Moscow), 16:8 (2010), 17–26 (in Russian) | MR

[6] Déneš J., Keedwell A. D., Latin squares and their applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR

[7] Trevor Evans, “Embedding incomplete latin squares”, Amer. Math. Monthly, 67 (1960), 958–961 | DOI | MR

[8] Kepka T., Nemec P., “$T$-quasigroups. I”, Acta Universitatis. Carolinae. Math. et Phys., 12:1 (1971), 39–49 | MR

[9] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Univ., 5 (1975), 191–196 | DOI | MR | Zbl

[10] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2005, no. 2(48), 3–42 | MR

[11] Popovich T. V., “On parastrophical-orthogonal quasigroups and graphs”, Proceedings of the 10-th Conference “Discrete Mathematics and its Applications”, Moscow, 2010, 258–260 (in Russian)

[12] Popovich T. V., “On conjugate sets of quasigroups”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2011, no. 3(67), 69–76 | MR | Zbl