Semilattices of r-archimedean subdimonoids
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 108-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize dimonoids which are semilattices of r-archimedean (-archimedean, (t;r)-archimedean) subdimonoids.
@article{BASM_2011_3_a9,
     author = {Anatolii V. Zhuchok},
     title = {Semilattices of $r$-archimedean subdimonoids},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {108--112},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a9/}
}
TY  - JOUR
AU  - Anatolii V. Zhuchok
TI  - Semilattices of $r$-archimedean subdimonoids
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 108
EP  - 112
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a9/
LA  - en
ID  - BASM_2011_3_a9
ER  - 
%0 Journal Article
%A Anatolii V. Zhuchok
%T Semilattices of $r$-archimedean subdimonoids
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 108-112
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a9/
%G en
%F BASM_2011_3_a9
Anatolii V. Zhuchok. Semilattices of $r$-archimedean subdimonoids. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 108-112. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a9/

[1] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl

[2] Bokut L. A., Chen Y., Liu C., “Gröbner–Shirshov bases for dialgebras”, Int. J. Algebra Comput., 20:3 (2010), 391–415 | DOI | MR | Zbl

[3] Pozhidaev A. P., “0-Dialgebras with bar-unity and nonassociative Rota–Baxter algebras”, Sib. Mat. Zh., 50:6 (2009), 1070–1080 | DOI | MR | Zbl

[4] Felipe R., “An analogue to functional analysis in dialgebras”, Int. Math. Forum, 2:21–24 (2007), 1069–1091 | MR | Zbl

[5] Phillips J. D., “A short basis for the variety of digroups”, Semigroup Forum, 70 (2005), 466–470 | DOI | MR | Zbl

[6] Zhuchok A. V., “Commutative dimonoids”, Algebra and Discrete Math., 2 (2009), 116–127 | MR | Zbl

[7] Zhuchok A. V., “Dibands of subdimonoids”, Mat. Stud., 33 (2010), 120–124 | MR | Zbl

[8] Zhuchok A. V., “Semilattices of subdimonoids”, Asian-Eur. J. Math., 4:2 (2011), 359–371 | DOI | MR | Zbl

[9] Zhuchok A. V., “Free commutative dimonoids”, Algebra and Discrete Math., 9:1 (2010), 109–119 | MR

[10] Zhuchok A. V., “Free dimonoids”, Ukr. Math. J., 63:2 (2011), 165–175 (in Ukrainian) | DOI | MR | Zbl

[11] Zhuchok A. V., “Free rectangular dibands and free dimonoids”, Algebra and Discrete Math., 11:2 (2011), 92–111 | MR | Zbl

[12] Schein B. M., “Restrictive bisemigroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 1(44), 168–179 (in Russian) | MR | Zbl

[13] Putcha M. S., “Rings which are semilattices of Archimedean semigroups”, Semigroup Forum, 23 (1981), 1–5 | DOI | MR | Zbl