Inclusion radii for the zeros of special polynomials
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 84-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

To locate the zeros of complex-valued polynomials is a classical problem in algebra and function theory. For this, numerous inclusion radii have been established to estimate the moduli of the zeros of an underlying polynomial. In this note, we particularly state bounds for polynomials whose coefficients satisfy special conditions.
@article{BASM_2011_3_a7,
     author = {Matthias Dehmer},
     title = {Inclusion radii for the zeros of special polynomials},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {84--90},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a7/}
}
TY  - JOUR
AU  - Matthias Dehmer
TI  - Inclusion radii for the zeros of special polynomials
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 84
EP  - 90
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a7/
LA  - en
ID  - BASM_2011_3_a7
ER  - 
%0 Journal Article
%A Matthias Dehmer
%T Inclusion radii for the zeros of special polynomials
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 84-90
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a7/
%G en
%F BASM_2011_3_a7
Matthias Dehmer. Inclusion radii for the zeros of special polynomials. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 84-90. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a7/

[1] Dehmer M., “On the location of zeros of complex polynomials”, Journal of Inequalities in Pure and Applied Mathematics, 7 (2006), Article 26 | MR

[2] Joyal A., Labelle G., Rhaman Q. I., “On the location of polynomials”, Canad. Math. Bull., 10 (1967), 53–63 | DOI | MR | Zbl

[3] Marden M., Geometry of polynomials, Mathematical Surveys of the American Mathematical Society, 3, Rhode Island, USA, 1966 | MR

[4] Mignotte M., Stefanescu D., Polynomials: An Algorithmic Approach, Discrete Mathematics and Theoretical Computer Science, Springer, 1999 | MR | Zbl

[5] Rahman Q. I., Schmeisser G., Analytic Theory of Polynomials. Critical Points, Zeros and Extremal Properties, Clarendon Press, 2002 | MR | Zbl