On conjugate sets of quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the set of conjugates (the conjugate set) of a binary quasigroup can contain 1, 2, 3 or 6 elements. We establish a connection between different pairs of conjugates and describe all six possible conjugate sets, with regard to the equality (“assembling”) of conjugates. Four identities which correspond to the equality of a quasigroup to its conjugates are pointed out. Every conjugate set is characterized with the help of these identities. The conditions of the equality of a T-quasigroup to conjugates are established and some examples of T-quasigroups with distinct conjugate sets are given.
@article{BASM_2011_3_a5,
     author = {Tatiana Popovich},
     title = {On conjugate sets of quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--76},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a5/}
}
TY  - JOUR
AU  - Tatiana Popovich
TI  - On conjugate sets of quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 69
EP  - 76
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a5/
LA  - en
ID  - BASM_2011_3_a5
ER  - 
%0 Journal Article
%A Tatiana Popovich
%T On conjugate sets of quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 69-76
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a5/
%G en
%F BASM_2011_3_a5
Tatiana Popovich. On conjugate sets of quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 69-76. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a5/

[1] Belousov V. D., Foundations of the quasigroup and loop theory, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[2] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups and related systems, 13:1 (2005), 25–72 | MR | Zbl

[3] Déneš J., Keedwell A. D., Latin squares and their applications, Académiai Kiado, Budapest; Academic Press, New York, 1974 | MR

[4] Kepka T., Nemec P., “$T$-quasigroups. I”, Acta Universitatis. Carolinae. Math. et Phys., 12:1 (1971), 39–49 | MR

[5] Lindner C. C., Steedly D., “On the number of conjugates of a quasigroup”, Algebra Univ., 5 (1975), 191–196 | DOI | MR | Zbl

[6] Mullen G., Shcherbacov V., “On orthogonality of binary operations and squares”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2005, no. 2(48), 3–42 | MR