Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2011_3_a2, author = {Namita Das and Srinibas Sahoo}, title = {A generalization of {Hardy--Hilbert's} inequality for non-homogeneous kernel}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--44}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/} }
TY - JOUR AU - Namita Das AU - Srinibas Sahoo TI - A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2011 SP - 29 EP - 44 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/ LA - en ID - BASM_2011_3_a2 ER -
%0 Journal Article %A Namita Das %A Srinibas Sahoo %T A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2011 %P 29-44 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/ %G en %F BASM_2011_3_a2
Namita Das; Srinibas Sahoo. A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/
[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambrige, 1952 | MR | Zbl
[2] Hardy G. H., “Note on a theorem of Hilbert concerning series of positive terms”, Proc. London Math. Soc., 23:2 (1925), 45–46
[3] Mulholland H. P., “A Further Generalization of Hilbert Double Series Theorem”, J. London Math. Soc., 6 (1931), 100–106 | DOI | MR | Zbl
[4] Mintrinovic D. S., Pecaric J. E., Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991 | MR
[5] Brnetic I., Pecaric J. E., “Generalization of inequalities of Hardy–Hilbert type”, Math. Ineq. and Appl., 7:2 (2004), 217–225 | DOI | MR | Zbl
[6] Yang B., Debnath L., “On the extended Hardy–Hilbert's inequality”, J. Math. Anal. Appl., 272 (2002), 187–199 | DOI | MR | Zbl
[7] Yang B., “On an extension of Hardy–Hilbert's inequality”, Chinese Annals of Math. (A), 23:2 (2002), 247–254 | MR | Zbl
[8] Yang B., “On generalizations Hilbert's inequality”, RGMIA Research Report Collection, 6:2 (2003), Article 16 | MR
[9] Yang B., “On new extensions of Hilbert's inequality”, Acta Math. Hungar., 104:3 (2004), 293–301 | MR
[10] Yang B., “On the best extension of Hardy–Hilbert's inequality with two parameters”, J. Ineq. Pure and Appl. Math., 6:3 (2005), Art. 81 | MR
[11] Yang B., “On a refinement of Hardy–Hilbert's inequality and its applications”, North. Math. J., 16:3 (2000), 279–286 | MR | Zbl
[12] Yang B., “On an Extended Hardy–Hilbert's Inequality and Some Reversed Form”, Int. Math. Forum, 1:36 (2006), 1905–1912 | MR | Zbl
[13] Yang B., “On New Generalization of Hilbert's inequality”, J. Math. Anal. Appl., 248:1 (2000), 29–40 | DOI | MR | Zbl
[14] Yang B., “On a relation between Hardy–Hilbert's inequality and Mulholland's inequality”, Acta Math. Sinica, 49:3 (2006), 559–566 | MR | Zbl
[15] Yang B., “On an extension of Hardy–Hilbert's inequality”, Kyungpook Math. J., 46 (2006), 425–431 | MR | Zbl
[16] Yang B., “On a new inequality similar to Hardy–Hilbert's inequality”, Math. Ineq. Appl., 6:1 (2003), 37–44 | DOI | MR | Zbl
[17] Yang B., Debnath L., “A Generalization of Mulholland's inequality”, Int. J. Math. Math. Sci., 56 (2003), 3591–3597 | MR | Zbl
[18] Wang Z., Guo D., An Introduction to Special Functions, Science Press, Beijing, 1979
[19] Kuang J., Applied Inequalities, Shangdong Science and Technology Press, Jinan, 2004