A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a generalization of Hardy–Hilbert's inequality for non-homogeneous kernel by considering sequences (sn), (tn), the functions ϕp, ϕq and parameter λ. This inequality generalizes both Hardy–Hilbert's inequality and Mulholland's inequality, which includes most of the recent results of this type. As applications, the equivalent form, some particular results and a generalized Hardy–Littlewood inequality are established.
@article{BASM_2011_3_a2,
     author = {Namita Das and Srinibas Sahoo},
     title = {A generalization of {Hardy--Hilbert's} inequality for non-homogeneous kernel},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--44},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/}
}
TY  - JOUR
AU  - Namita Das
AU  - Srinibas Sahoo
TI  - A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 29
EP  - 44
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/
LA  - en
ID  - BASM_2011_3_a2
ER  - 
%0 Journal Article
%A Namita Das
%A Srinibas Sahoo
%T A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 29-44
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/
%G en
%F BASM_2011_3_a2
Namita Das; Srinibas Sahoo. A generalization of Hardy--Hilbert's inequality for non-homogeneous kernel. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 29-44. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a2/

[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambrige, 1952 | MR | Zbl

[2] Hardy G. H., “Note on a theorem of Hilbert concerning series of positive terms”, Proc. London Math. Soc., 23:2 (1925), 45–46

[3] Mulholland H. P., “A Further Generalization of Hilbert Double Series Theorem”, J. London Math. Soc., 6 (1931), 100–106 | DOI | MR | Zbl

[4] Mintrinovic D. S., Pecaric J. E., Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991 | MR

[5] Brnetic I., Pecaric J. E., “Generalization of inequalities of Hardy–Hilbert type”, Math. Ineq. and Appl., 7:2 (2004), 217–225 | DOI | MR | Zbl

[6] Yang B., Debnath L., “On the extended Hardy–Hilbert's inequality”, J. Math. Anal. Appl., 272 (2002), 187–199 | DOI | MR | Zbl

[7] Yang B., “On an extension of Hardy–Hilbert's inequality”, Chinese Annals of Math. (A), 23:2 (2002), 247–254 | MR | Zbl

[8] Yang B., “On generalizations Hilbert's inequality”, RGMIA Research Report Collection, 6:2 (2003), Article 16 | MR

[9] Yang B., “On new extensions of Hilbert's inequality”, Acta Math. Hungar., 104:3 (2004), 293–301 | MR

[10] Yang B., “On the best extension of Hardy–Hilbert's inequality with two parameters”, J. Ineq. Pure and Appl. Math., 6:3 (2005), Art. 81 | MR

[11] Yang B., “On a refinement of Hardy–Hilbert's inequality and its applications”, North. Math. J., 16:3 (2000), 279–286 | MR | Zbl

[12] Yang B., “On an Extended Hardy–Hilbert's Inequality and Some Reversed Form”, Int. Math. Forum, 1:36 (2006), 1905–1912 | MR | Zbl

[13] Yang B., “On New Generalization of Hilbert's inequality”, J. Math. Anal. Appl., 248:1 (2000), 29–40 | DOI | MR | Zbl

[14] Yang B., “On a relation between Hardy–Hilbert's inequality and Mulholland's inequality”, Acta Math. Sinica, 49:3 (2006), 559–566 | MR | Zbl

[15] Yang B., “On an extension of Hardy–Hilbert's inequality”, Kyungpook Math. J., 46 (2006), 425–431 | MR | Zbl

[16] Yang B., “On a new inequality similar to Hardy–Hilbert's inequality”, Math. Ineq. Appl., 6:1 (2003), 37–44 | DOI | MR | Zbl

[17] Yang B., Debnath L., “A Generalization of Mulholland's inequality”, Int. J. Math. Math. Sci., 56 (2003), 3591–3597 | MR | Zbl

[18] Wang Z., Guo D., An Introduction to Special Functions, Science Press, Beijing, 1979

[19] Kuang J., Applied Inequalities, Shangdong Science and Technology Press, Jinan, 2004