Transversals in loops.~3. Loop transversals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigation of the new notion of a transversal in a loop to its subloop (begun in [10]) is continued in the present article. This notion generalized the well-known notion of a transversal in a group to its subgroup and can be correctly defined only in the case when some specific condition (Condition A) for a loop and its subloop holds. The connections between loop transversals in some loop to its subloop and loop transversals in multiplicative group of this loop to some suitable subgroup are investigated in this work.
@article{BASM_2011_3_a0,
     author = {Eugene Kuznetsov},
     title = {Transversals in loops.~3. {Loop} transversals},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a0/}
}
TY  - JOUR
AU  - Eugene Kuznetsov
TI  - Transversals in loops.~3. Loop transversals
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a0/
LA  - en
ID  - BASM_2011_3_a0
ER  - 
%0 Journal Article
%A Eugene Kuznetsov
%T Transversals in loops.~3. Loop transversals
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 3-14
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a0/
%G en
%F BASM_2011_3_a0
Eugene Kuznetsov. Transversals in loops.~3. Loop transversals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 3-14. https://geodesic-test.mathdoc.fr/item/BASM_2011_3_a0/

[1] Baer R., “Nets and groups”, Trans. Amer. Math. Soc., 46 (1939), 110–141 | DOI | MR | Zbl

[2] Belousov V. D., Foundations of quasigroup and loop theory, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[3] Bonetti F., Lunardon G., Strambach K., “Cappi di permutazioni”, Rend. Math., 12:3–4 (1979), 383–395 | MR | Zbl

[4] Foguel T., Kappe L. C., “On loops covered by subloops”, Expositiones Matematicae, 23 (2005), 255–270 | DOI | MR | Zbl

[5] Johnson K. W., “$S$-rings over loops, right mapping groups and transversals in permutation groups”, Math. Proc. Camb. Phil. Soc., 89 (1981), 433–443 | DOI | MR | Zbl

[6] Kuznetsov E. A., “Transversals in groups. 1. Elementary properties”, Quasigroups and related systems, 1:1 (1994), 22–42 | MR | Zbl

[7] Kuznetsov E. A., “About some algebraic systems related with projective planes”, Quasigroups and related systems, 2:1 (1995), 6–33 | MR | Zbl

[8] Kuznetsov E. A., “Transversals in groups. Semidirect product of a transversal operation and subgroup”, Quasigroups and related systems, 8 (2001), 37–44 | MR | Zbl

[9] Kuznetsov E. A., “Transversals in loops”, Abstracts of International Conference “Loops-03” (Prague, August 10–17, 2003), 18–20

[10] Kuznetsov E. A., “Transversals in loops. 1. Elementary properties”, Quasigroups and related systems, 18:1 (2010), 43–58 | MR | Zbl

[11] Niemenmaa M., Kepka T., “On multiplication groups of loops”, J. of Algebra, 135 (1990), 112–122 | DOI | MR | Zbl

[12] Pflugfelder H., Quasigroups and loops: Introduction, Sigma Series in Pure Math., 7, Helderman Verlag, New York, 1972 | MR

[13] Sabinin L. V., Mikheev O. I., “Quasigroups and differential geometry”, Chapter XII in the book, Quasigroups and loops: Theory and Applications, Helderman-Verlag, Berlin, 1990, 357–430 | MR