The variational approach to nonlinear evolution equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 89-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a few recent existence results via variational approach for the Cauchy problem $$ \frac{dy}{dt}(t)+A(t)y(t)\ni f(t),\quad y(0)=y_0,\qquad t\in[0,T], $$ where A(t):VV is a nonlinear maximal monotone operator of subgradient type in a dual pair (V,V) of reflexive Banach spaces. In this case, the above Cauchy problem reduces to a convex optimization problem via Brezis–Ekeland device and this fact has some relevant implications in existence theory of infinite-dimensional stochastic differential equations.
@article{BASM_2011_2_a7,
     author = {Viorel Barbu},
     title = {The variational approach to nonlinear evolution equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {89--101},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/}
}
TY  - JOUR
AU  - Viorel Barbu
TI  - The variational approach to nonlinear evolution equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 89
EP  - 101
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/
LA  - en
ID  - BASM_2011_2_a7
ER  - 
%0 Journal Article
%A Viorel Barbu
%T The variational approach to nonlinear evolution equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 89-101
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/
%G en
%F BASM_2011_2_a7
Viorel Barbu. The variational approach to nonlinear evolution equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 89-101. https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/

[1] Auchmuty G., “Saddle-points and existence-uniqueness for evolution equations”, Diff. Integral Equations, 6:5 (1993), 1167–1171 | MR

[2] Barbu V., Analysis and Control of Infinite Dimensional Systems, Academic Press, San Diego, 1993 | MR | Zbl

[3] Barbu V., Optimal Control of Variational Inequalities, Pitman, Longman, London, 1984 | MR | Zbl

[4] Barbu V., Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer-Verlag, New York, 2010 | MR

[5] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, D. Reidel Publishing, New edition Springer, Dordrecht, 1986 | MR | Zbl

[6] Barbu V., “A variational approach stochastic nonlinear problems”, J. Math. Anal. Appl., 384 (2011), 2–15 | DOI | MR | Zbl

[7] Brezis H., Ekeland I., “Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps”, C. R. Acad. Sci. Paris, 282 (1976), 971–974 | MR | Zbl

[8] Brezis H., Ekeland I., “Un principe variationnel associé à certaines équations paraboliques. Le cas dépendent du temps”, C. R. Acad. Sci. Paris, 282 (1976), 1197–1198 | MR | Zbl

[9] Fitzpatrick S., “Representing monotone operators by convex functions”, Workshop/Miniconference on Function Analysis and Optimization, Proceedings Centre Math. Anal. Australian Nat. University, 20, Canberra, 1988, 59–65 | MR | Zbl

[10] Ghoussoub N., Tzou L., “A variational principle for gradient flows”, Math. Ann., 330 (2004), 519–549 | DOI | MR | Zbl

[11] Ghoussoub N., Selfdual Partial Differential Systems and Their Variational Principles, Springer, 2008 | MR

[12] Nayroles B., “Deux théorèmes de minimum pour certains systèmes dissipatifs”, C. R. Acad. Sci. Paris, 282 (1976), 510–585 | MR

[13] Stefanelli U., “The Brezis–Ekeland principle for doubly nonlinear equations”, SIAM J. Control and Optimiz., 8 (2008), 1615–1642 | DOI | MR

[14] Visintin A., “Extension of the Brezis–Ekeland–Nayroles principle to monotone operators”, Boll. Unione Mat. Ital., 2010