Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2011_2_a7, author = {Viorel Barbu}, title = {The variational approach to nonlinear evolution equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {89--101}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/} }
Viorel Barbu. The variational approach to nonlinear evolution equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 89-101. https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a7/
[1] Auchmuty G., “Saddle-points and existence-uniqueness for evolution equations”, Diff. Integral Equations, 6:5 (1993), 1167–1171 | MR
[2] Barbu V., Analysis and Control of Infinite Dimensional Systems, Academic Press, San Diego, 1993 | MR | Zbl
[3] Barbu V., Optimal Control of Variational Inequalities, Pitman, Longman, London, 1984 | MR | Zbl
[4] Barbu V., Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer-Verlag, New York, 2010 | MR
[5] Barbu V., Precupanu T., Convexity and Optimization in Banach Spaces, D. Reidel Publishing, New edition Springer, Dordrecht, 1986 | MR | Zbl
[6] Barbu V., “A variational approach stochastic nonlinear problems”, J. Math. Anal. Appl., 384 (2011), 2–15 | DOI | MR | Zbl
[7] Brezis H., Ekeland I., “Un principe variationnel associé à certaines équations paraboliques. Le cas indépendent du temps”, C. R. Acad. Sci. Paris, 282 (1976), 971–974 | MR | Zbl
[8] Brezis H., Ekeland I., “Un principe variationnel associé à certaines équations paraboliques. Le cas dépendent du temps”, C. R. Acad. Sci. Paris, 282 (1976), 1197–1198 | MR | Zbl
[9] Fitzpatrick S., “Representing monotone operators by convex functions”, Workshop/Miniconference on Function Analysis and Optimization, Proceedings Centre Math. Anal. Australian Nat. University, 20, Canberra, 1988, 59–65 | MR | Zbl
[10] Ghoussoub N., Tzou L., “A variational principle for gradient flows”, Math. Ann., 330 (2004), 519–549 | DOI | MR | Zbl
[11] Ghoussoub N., Selfdual Partial Differential Systems and Their Variational Principles, Springer, 2008 | MR
[12] Nayroles B., “Deux théorèmes de minimum pour certains systèmes dissipatifs”, C. R. Acad. Sci. Paris, 282 (1976), 510–585 | MR
[13] Stefanelli U., “The Brezis–Ekeland principle for doubly nonlinear equations”, SIAM J. Control and Optimiz., 8 (2008), 1615–1642 | DOI | MR
[14] Visintin A., “Extension of the Brezis–Ekeland–Nayroles principle to monotone operators”, Boll. Unione Mat. Ital., 2010