Saddle points with respect to a~set
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extension of the concept of saddle point, a continuous property of two functions related to saddle points with respect to a set and a theorem of existence of saddle points with respect to a set are given. The paper ends with an example which shows that the proved theorems are consistent.
@article{BASM_2011_2_a5,
     author = {Dorel I. Duca and Liana Lup\c{s}a},
     title = {Saddle points with respect to a~set},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {70--80},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a5/}
}
TY  - JOUR
AU  - Dorel I. Duca
AU  - Liana Lupşa
TI  - Saddle points with respect to a~set
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 70
EP  - 80
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a5/
LA  - en
ID  - BASM_2011_2_a5
ER  - 
%0 Journal Article
%A Dorel I. Duca
%A Liana Lupşa
%T Saddle points with respect to a~set
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 70-80
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a5/
%G en
%F BASM_2011_2_a5
Dorel I. Duca; Liana Lupşa. Saddle points with respect to a~set. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 70-80. https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a5/

[1] Berge C., “Sur une convexité régulière et ses applications a la théorie des jeux”, Bull. Soc. Math. France, 82 (1954), 301–319 | MR

[2] Cristescu G., Lupşa L., Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR | Zbl

[3] Duca D. I., Lupşa L., “$Bi$-$(\varphi,\psi)$ Convex Sets”, Mathematica Pannonica, 14 (2003), 193–203 | MR | Zbl

[4] Duca D. I., Lupşa L., “$Bi$-$(\varphi,\psi)$ Convex-Concave Functions”, Scientific Bulletin of the “Politehnica” University of Timişoara, 48(62):2 (2003), 67–72 | MR | Zbl

[5] Duca D. I., Lupşa L., “On the $E$-Epigraph of an $E$-Convex Function”, J. Optim. Theory Appl., 129:2 (2006), 341–348 | DOI | MR | Zbl

[6] Fan K., “Minimax Theorems”, Proc. Nat. Acad. Sci., 39 (1953), 42–47 | DOI | MR | Zbl

[7] Greco G. H., Horvath C. D., “A Topological Minimax Theorem”, J. Optim. Theory Appl., 113 (2002), 513–536 | DOI | MR | Zbl

[8] Hartung J., “An Extension of Sion's Min-Max Theorem with an Application to a Method for Constrained Games”, Pacific J. Math., 103:2 (1982), 401–408 | DOI | MR | Zbl

[9] Kenderov P. S., Lucchetti R. E., “Generic Well Posedness of SupInf Problems”, Bull. Austral. Math. Soc., 54:1 (1966), 5–25 | DOI | MR

[10] Kneser H., “Sur un thé orème fondamental de la théorie des jeux”, C. R. Acad. Sci., Paris, 234:25 (1952), 2418–2420 | MR | Zbl

[11] Von Neumann J., “Zur Theorie der Gesellschaftsspiele”, Math. Ann., 100 (1928), 295–320 | DOI | MR | Zbl

[12] Nikaido H., “On Von Neumann's Minmax Theorem”, Pacific J. Math., 4 (1954), 65–72 | DOI | MR | Zbl

[13] Passy U., Prisman E. Z., “A Duality Approach to Minimax Results for Quasisaddle Functions in Finite Dimensions”, Math. Programming, 55 (1992), 81–98 | DOI | MR | Zbl

[14] Schiffman M., On the Equality Minmax-Maxmin, and the Theory of Games, Report RM–243, RAND, 1949

[15] Simons S., “A Flexible Minimax Theorem”, Acta Mathematica Hungarica, 63 (1994), 119–132 | DOI | MR | Zbl

[16] Sion M., “On General Minmax Theorems”, Pacific J. Math., 8 (1958), 171–176 | DOI | MR | Zbl

[17] Tuy H., “On a General Minimax Theorem”, Soviet Math. Dokl., 15 (1974), 1689–1693 | MR | Zbl

[18] Tuy H., “On the General Minimax Theorem”, Colloquium Mathematicum, 33 (1975), 145–158 | MR | Zbl

[19] Tuy H., “Minimax Theorems Revisited”, Acta Mathematica Vietnamica, 29 (2004), 217–229 | MR | Zbl

[20] Yu J., Yuan X. Z., “New Saddle Point Theorem Beyound Topological Vector Spaces”, J. Optim. Theory Appl., 96 (1998), 211–219 | DOI | MR | Zbl