Convex solids with hyperplanar midsurfaces for restricted families of chords
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 23-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide new characteristic properties of convex quadrics in Rn in terms of hyperplanarity of midsurfaces of convex solids for restricted families of chords. These properties are based on various auxiliary characterizations of convex quadrics that involve hyperplane supports and plane quadric sections.
@article{BASM_2011_2_a2,
     author = {Valeriu Soltan},
     title = {Convex solids with hyperplanar midsurfaces for restricted families of chords},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--40},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a2/}
}
TY  - JOUR
AU  - Valeriu Soltan
TI  - Convex solids with hyperplanar midsurfaces for restricted families of chords
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 23
EP  - 40
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a2/
LA  - en
ID  - BASM_2011_2_a2
ER  - 
%0 Journal Article
%A Valeriu Soltan
%T Convex solids with hyperplanar midsurfaces for restricted families of chords
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 23-40
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a2/
%G en
%F BASM_2011_2_a2
Valeriu Soltan. Convex solids with hyperplanar midsurfaces for restricted families of chords. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2011), pp. 23-40. https://geodesic-test.mathdoc.fr/item/BASM_2011_2_a2/

[1] Alonso J., Martín P., “Some characterizations of ellipsoids by sections”, Discrete Comput. Geom., 31 (2004), 643–654 | DOI | MR | Zbl

[2] Berger M., Geometry, v. I, II, Springer, Berlin, 1987 | Zbl

[3] Blaschke W., Kreis und Kugel, Viet, Leipzig, 1916

[4] Brunn H., Ueber Kurven ohne Wendepunkte, Habilitationsschrift, Ackermann, München, 1889 | Zbl

[5] Busemann H., The geometry of geodesics, Academic Press, New York, 1955 | MR | Zbl

[6] Carathéodory C., “Über den Variabilitätsbereich der Koefficienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64 (1907), 95–115 | DOI | MR | Zbl

[7] Gruber P. M., “Über kennzeichende Eigenschaften von eucklidischen Raumen und Ellipsoiden, I”, J. Reine Angew. Math., 265 (1974), 61–83 | DOI | MR | Zbl

[8] Klee V. L., “Some characterizations of convex polyhedra”, Acta Math., 102 (1959), 79–107 | DOI | MR | Zbl

[9] Kubota T., “On a characteristic property of the ellipse”, Tôhoku Math. J., 9 (1916), 148–151 | Zbl

[10] Nakajima S., “Über konvexe Kurven und Flächen”, Tohôku Math. J., 29 (1928), 227–230 | Zbl

[11] Osgood W. F., Graustein W. C., Plane and solid analytic geometry, Macmillan, New York, 1942

[12] Petty C. M., “Ellipsoids”, Convexity and its applications, eds. P. M. Gruber, J. M. Wills, Birkhäuser, Basel, 1983, 264–276 | DOI | MR

[13] Soltan V., “Convex bodies with polyhedral midhypersurfaces”, Arch. Math., 65 (1995), 336–341 | DOI | MR | Zbl

[14] Soltan V., “Affine diameters of convex bodies – a survey”, Expo. Math., 23 (2005), 47–63 | DOI | MR | Zbl

[15] Soltan V., “Convex solids with planar midsurfaces”, Proc. Amer. Math. Soc., 136 (2008), 1071–1081 | DOI | MR | Zbl

[16] Soltan V., “Convex solids with planar homothetic sections through given points”, J. Convex Analysis, 16 (2009), 473–486 | MR | Zbl

[17] Soltan V., “Convex quadrics”, Bul. Acad. Ştiinţe Repub. Moldova. Mat., 2010, no. 3(64), 94–106 | MR | Zbl

[18] Tietze H., “Über Konvexheit im kleinen und im grossen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen”, Math. Z., 28 (1928), 697–707 | DOI | MR | Zbl

[19] Webster R. J., Convexity, Oxford University Press, Oxford, 1994 | MR | Zbl