Free topological universal algebras and absolute neighborhood retracts
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for a complete quasivariety K of topological E-algebras of countable discrete signature E and each submetrizable ANR(kω)-space X its free topological E-algebra FK(X) in the class K is a submetrizable ANR(kω)-space.
@article{BASM_2011_1_a4,
     author = {Taras Banakh and Olena Hryniv},
     title = {Free topological universal algebras and absolute neighborhood retracts},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {50--59},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2011_1_a4/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Olena Hryniv
TI  - Free topological universal algebras and absolute neighborhood retracts
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 50
EP  - 59
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2011_1_a4/
LA  - en
ID  - BASM_2011_1_a4
ER  - 
%0 Journal Article
%A Taras Banakh
%A Olena Hryniv
%T Free topological universal algebras and absolute neighborhood retracts
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 50-59
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2011_1_a4/
%G en
%F BASM_2011_1_a4
Taras Banakh; Olena Hryniv. Free topological universal algebras and absolute neighborhood retracts. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 50-59. https://geodesic-test.mathdoc.fr/item/BASM_2011_1_a4/

[1] Banakh T., Klymenko M., Zarichnyi M., On monomorphic topological functors with finite supports, preprint, arXiv: 1004.0457

[2] Basmanov V., “Covariant functors, retracts, and dimension”, Dokl. Akad. Nauk SSSR, 271:5 (1983), 1033–1036 | MR | Zbl

[3] Borges C., “On stratifiable spaces”, Pacific J. Math., 17 (1966), 1–16 | DOI | MR | Zbl

[4] Borsuk K., “Über Isomorphie der Functionalräume”, Bull. Inst. Acad. Polon. Sci. Ser. A, 1933, no. 1–3, 1–10 | Zbl

[5] Choban M. M., “On the theory of topological algebraic systems”, Trudy Moskov. Mat. Obshch., 48, 1985, 106–149 | MR

[6] Choban M. M., “Some topics in topological algebra”, Topology Appl., 54 (1993), 1–3 | DOI | MR | Zbl

[7] Choban M. M., “Algebraical equivalences of topological spaces”, Bul. Acad. Stiinte Repub. Mold. Mat., 2001, no. 1(35), 12–36 | MR | Zbl

[8] Dugundji J., “An extension of Tietze's theorem”, Pacific J. Math., 1 (1951), 353–367 | DOI | MR | Zbl

[9] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[10] Gruenhage G., “Generalized metric spaces”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 423–501 | DOI | MR

[11] Hu S.-T., Theory of Retracts, Wayne State Univ. Press, Detroit, 1965 | MR | Zbl

[12] Sakai K., “On $\mathbb R^\infty$-manifolds and $Q^\infty$-manifolds”, Topology Appl., 18:1 (1984), 69–79 | DOI | MR | Zbl

[13] Sakai K., “On $\mathbb R^\infty$-manifolds and $Q^\infty$-manifolds. II. Infinite deficiency”, Tsukuba J. Math., 8:1 (1984), 101–118 | MR | Zbl