Convex quadrics
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 94-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and describe convex quadrics in Rn and characterize them as convex hypersurfaces with quadric sections by a continuous family of hyperplanes.
@article{BASM_2010_3_a9,
     author = {Valeriu Soltan},
     title = {Convex quadrics},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {94--106},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a9/}
}
TY  - JOUR
AU  - Valeriu Soltan
TI  - Convex quadrics
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 94
EP  - 106
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a9/
LA  - en
ID  - BASM_2010_3_a9
ER  - 
%0 Journal Article
%A Valeriu Soltan
%T Convex quadrics
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 94-106
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a9/
%G en
%F BASM_2010_3_a9
Valeriu Soltan. Convex quadrics. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 94-106. https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a9/

[1] Aitchison P. W., “The determination of convex bodies by some local conditions”, Duke Math. J., 41 (1974), 193–209 | DOI | MR | Zbl

[2] Alexandrov A. D., “On convex surfaces with plane shadow-boundaries”, Mat. Sbornik, 5(47):2 (1939), 309–316 (Russian) | MR | Zbl

[3] Auerbach H., Mazur S., Ulam S., “Sur une propriété caractéristique de l'ellipsoïde”, Monatsh. Math., 42 (1935), 45–48 | DOI | MR | Zbl

[4] Bianchi G., Gruber P. M., “Characterization of ellipsoids”, Arch. Math. (Basel), 49 (1987), 344–350 | DOI | MR | Zbl

[5] Blaschke W., Hessenberg G., “Lehrsätze über konvexe Körper”, Jahresber. Deutsch. Math.-Vereinig., 26 (1917), 215–220 | Zbl

[6] Burton G. R., “Sections of convex bodies”, J. London Math. Soc., 12 (1976), 331–336 | DOI | MR | Zbl

[7] Busemann H., The geometry of geodesics, Academic Press, New York, 1955 | MR | Zbl

[8] Chakerian G. D., “The affine image of a convex body of constant breadth”, Israel J. Math., 3 (1965), 19–22 | DOI | MR | Zbl

[9] Gruber P. M., Höbinger J., “Kennzeichnungen von Ellipsoiden mit Anwendungen”, Jahrbuch Überblicke Mathematik, Bibliographisches Inst. Mannheim, 1976, 9–29 | MR

[10] Heil E., Martini H., “Special convex bodies”, Handbook of convex geometry, v. A, eds. P. M. Gruber, J. M. Wills, North-Holland, Amsterdam, 1993, 347–385 | DOI | MR | Zbl

[11] Höbinger J., Über einen Satz von Aitchison. Petty und Rogers, Ph. D. Thesis, Techn. Univ., Wien, 1974

[12] Kubota T., “Einfache Beweise eines Satzes über die konvexe geschlossene Fläche”, Sci. Rep. Tôhoku Univ., 3 (1914), 235–255 | Zbl

[13] Petty C. M., “Ellipsoids”, Convexity and its applications, eds. P. M. Gruber, J. M. Wills, Birkhäuser, Basel, 1983, 264–276 | DOI | MR

[14] Soltan V., “Addition and substraction of homothety classes of convex sets”, Beiträge Algebra Geom., 47 (2006), 351–361 | MR | Zbl

[15] Soltan V., “Convex solids with planar midsurfaces”, Proc. Amer. Math. Soc., 136 (2008), 1071–1081 | DOI | MR | Zbl

[16] Soltan V., “Convex solids with homothetic sections through given points”, J. Convex Anal., 16 (2009), 473–486 | MR | Zbl