Topological rings with at most two nontrivial closed ideals
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 77-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe the Hausdorff topological rings with identity in which every nontrivial closed ideal is topologically maximal, respectively, strongly topologically maximal, and the Hausdorff topological rings with identity which have no more than two nontrivial closed ideals.
@article{BASM_2010_3_a8,
     author = {Valeriu Popa},
     title = {Topological rings with at most two nontrivial closed ideals},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {77--93},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a8/}
}
TY  - JOUR
AU  - Valeriu Popa
TI  - Topological rings with at most two nontrivial closed ideals
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 77
EP  - 93
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a8/
LA  - en
ID  - BASM_2010_3_a8
ER  - 
%0 Journal Article
%A Valeriu Popa
%T Topological rings with at most two nontrivial closed ideals
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 77-93
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a8/
%G en
%F BASM_2010_3_a8
Valeriu Popa. Topological rings with at most two nontrivial closed ideals. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 77-93. https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a8/

[1] Bourbaki N., Topologie generale, Chapter 3–8, Éléments de mathematique, Nauka, Moscow, 1969 | Zbl

[2] Engelking R., General topology, Warszawa, 1977 | MR | Zbl

[3] Mac Lane S., “Homologie des aneaux et des modules”, Colloque de Topologie Algebrique, Louvain, 1956, 55–80 | MR

[4] Perticani F., “Commutative rings in which every proper ideal is maximal”, Fund. Math., 71:3 (1971), 193–198 | MR | Zbl

[5] Warner S., Topological rings, North-Holland Mathematics Studies, 178, North-Holland, Amsterdam–London–New York–Tokyo, 1993 | MR | Zbl