Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 51-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a class of cubic differential systems with a bundle of two invariant straight lines and one invariant conic it is proved that a weak focus is a center if and only if the first four Liapunov quantities Lj, j=1,4, vanish.
@article{BASM_2010_3_a6,
     author = {Dimitru Cozma},
     title = {Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--66},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a6/}
}
TY  - JOUR
AU  - Dimitru Cozma
TI  - Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 51
EP  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a6/
LA  - en
ID  - BASM_2010_3_a6
ER  - 
%0 Journal Article
%A Dimitru Cozma
%T Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 51-66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a6/
%G en
%F BASM_2010_3_a6
Dimitru Cozma. Center problem for a~class of cubic systems with a~bundle of two invariant straight lines and one invariant conic. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 51-66. https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a6/

[1] Bondar Y. L., Sadovskii A. P., “Variety of the center and limit cycles of a cubic system, which is reduced to Lienard form”, Bull. Acad. Sci. of Moldova. Mathematics, 2004, no. 3(46), 71–90 | MR | Zbl

[2] Chavarriga J., Gin'e J., “Integrability of cubic systems with degenerate infinity”, Differential Equations and Dynamical Systems, 6:4 (1998), 425–438 | MR | Zbl

[3] Chen X., Romanovski V. G., “Linearizability conditions of time-reversible cubic systems”, Journal of Mathematical Analysis and Applications, 362:2 (2010), 438–449 | DOI | MR | Zbl

[4] Cherkas L. A., Romanovskii V. G., Zoladek H., “The center conditions for a certain cubic system”, Differential Equations and Dynamical Systems, 5:3–4 (1997), 299–302 | MR | Zbl

[5] Christopher C., Llibre J., Pantazi C., Zhang X., “Darboux integrability and invariant algebraic curves for planar polynomial systems”, J. Phys. A, 35:10 (2002), 2457–2476 | DOI | MR | Zbl

[6] Cozma D., Şubă A., “Partial integrals and the first focal value in the problem of center”, Nonlinear Differential Equations and Applications, 2:1 (1995), 21–34 | DOI | MR | Zbl

[7] Cozma D., Şubă A., “The solution of the problem of center for cubic differential systems with four invariant straight lines”, Scientific Annals of the Al. I. Cuza University (Romania), Mathematics, 44, Suppl. (1998), 517–530 | MR | Zbl

[8] Cozma D., Şubă A., “Solution of the problem of the center for a cubic differential system with three invariant straight lines”, Qualitative Theory of Dynamical Systems, 2:1 (2001), 129–143 | DOI | MR | Zbl

[9] Cozma D., “Darboux integrability in the cubic differential systems with three invariant straight lines”, Romai Journal, 5:1 (2009), 45–61 | MR | Zbl

[10] Cozma D., “The problem of the center for cubic systems with two parallel invariant straight lines and one invariant conic”, Nonlinear Differential Equations and Applications, 16:2 (2009), 213–234 | DOI | MR | Zbl

[11] Dulac H., “Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un center”, Bull. Sciences Math. 2me série, 32:1 (1908), 230–252 | MR | Zbl

[12] Korn G., Korn T., Mathematical handbook, McGraw-Hill Book Company, 1968 | MR

[13] Levandovskyy V., Romanovski V. G., Shafer D. S., “The cyclicity of a cubic system with nonradical Bautin ideal”, Journal of Differential Equations, 246 (2009), 1274–1287 | DOI | MR | Zbl

[14] Levandovskyy V., Logar A., Romanovski V. G., “The cyclicity of a cubic system”, Open Systems and Information Dynamics, 16:4 (2009), 429–439 | DOI | MR | Zbl

[15] Puţuntică V., Şubă A., “Cubic differential systems with six real invariant straight lines along five directions”, Bull. Acad. Sci. of Moldova. Mathematics, 2009, no. 2(60), 111–130 | MR

[16] Sibirskii K. S., “On the number of limit cycles in the neighborhood of a singular point”, Differentsial'nye Uravneniya, 1 (1965), 51–66 (Russian) | MR

[17] Şubă A., Cozma D., “Solution of the problem of the center for cubic systems with two homogeneous and one nonhomogeneous invariant straight lines”, Bull. Acad. Sci. of Moldova. Mathematics, 1999, no. 1(29), 37–44 | MR | Zbl

[18] Şubă A., Cozma D., “Solution of the problem of center for cubic differential systems with three invariant straight lines in generic position”, Qualitative Theory of Dynamical Systems, 6 (2005), 45–58 | DOI | MR | Zbl

[19] Şubă A., “Partial integrals, integrability and the center problem”, Differential Equations, 32:7 (1996), 884–892 | MR

[20] Żoła̧dek H., “On certain generalization of the Bautin's theorem”, Nonlinearity, 7 (1994), 273–279 | DOI | MR