Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2010_3_a4, author = {Vladimir Emelichev and Vladimir Korotkov and Kirill Kuzmin}, title = {On stability of {Pareto-optimal} solution of portfolio optimization problem with {Savage's} minimax risk criteria}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {35--44}, publisher = {mathdoc}, number = {3}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/} }
TY - JOUR AU - Vladimir Emelichev AU - Vladimir Korotkov AU - Kirill Kuzmin TI - On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 35 EP - 44 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/ LA - en ID - BASM_2010_3_a4 ER -
%0 Journal Article %A Vladimir Emelichev %A Vladimir Korotkov %A Kirill Kuzmin %T On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2010 %P 35-44 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/ %G en %F BASM_2010_3_a4
Vladimir Emelichev; Vladimir Korotkov; Kirill Kuzmin. On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 35-44. https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/
[1] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Stability and parametric analysis of discrete optimization problems, Naukova Dumka, Kiev, 1995 (Russian)
[2] Sergienko I. V., Shilo V. P., Discrete optimization problems: challenges, solution techniques, and investigations, Naukova Dumka, Kiev, 2003 (Russian)
[3] Sotskov Yu. N., Sotskova N. Yu., Scheduling theory. Systems with uncertain numerical parameters, UIIP of NAS of Belarus, Minsk, 2004 (Russian)
[4] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in reak combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl
[5] Sotskov Yu. N., Tanaev V. S., Werner F., “Stability radius of an optimal schedule: a survey and recent developments”, Industrial Applications of Combinatorial Optimization, Kluwer Acad. Publ., Dordrecht, 1998, 72–108 | DOI | MR | Zbl
[6] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[7] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search, Interfaces in Computer Science and Operations Research, Operations Research/Computer Science Interfaces Series, 9, Kluwer Academic Publishers, Boston, MA, 1998, 97–148 | DOI | MR
[8] Greenberg H. J., “A bibliography for the development of an intelligent mathematical programming system”, Annals of Operations Research, 65:1 (1996), 55–90 | DOI | Zbl
[9] Emelichev V. A., Kuzmin K. G., “On the stability radius of a vector integer linear programming problem in the case of the regularity norms in the criterion space”, Cybernetics and Systems Analysis, 46:1 (2010), 82–89 | DOI | MR | Zbl
[10] Emelichev V. A., Kuzmin K. G., “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | MR | Zbl
[11] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR | Zbl
[12] Emelichev V. A., Karelkina O. V., “Finite cooperative games: parameterisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation Hölder metric”, Discrete Math. Appl., 19:3 (2009), 229–236 | DOI | MR | Zbl
[13] Bukhtoyarov S. E., Emelichev V. A., “On stability of an optimal situation in a finite cooperative game with a parametric concept of equilibrium”, Computer Science Journal of Moldova, 12:3 (2004), 371–380 | MR | Zbl
[14] Emelichev V. A., Kuzmin K. G., “Stability radius of a lexicographic optimum of a vector problem of boolean programming”, Cybernetics and Systems Analysis, 41:2 (2005), 215–223 | DOI | MR | Zbl
[15] Bukhtoyarov S. E., Emelichev V. A., “On quasistability radius of a vector trajectorial problem with a principle of optimality generalizing Pareto and lexicographic principles”, Computer Science Journal of Moldova, 13:1 (2005), 47–58 | MR | Zbl
[16] Markowitz H. M., Portfolio selection: efficient diversification of investments, Blackwell Publ., Oxford, 1991
[17] Markowitz H., “Portfolio selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI
[18] Steuer R. E., Na P., “Multiple criteria decision making combined with finance: a categorized bibliographic study”, Eur. J. Oper. Res., 150:3 (2003), 496–515 | DOI | Zbl
[19] Savage L. J., “The Theory of Statistical Decision”, J. Amer. Statist. Assoc., 46:253 (1951), 55–67 | DOI | Zbl
[20] Savage L. J., The Foundations of Statistics, Dover Publ., New York, 1972 | MR | Zbl
[21] Wentzel E. S., Operations Research, Sovetskoe radio, Moscow, 1972 (Russian)
[22] Baldin K. V., Risk management, Eksmo, Moscow, 2006 (Russian)
[23] Hohlov N. V., Risk management, UNITY-DANA, Moscow, 2001 (Russian)
[24] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, Journal of Mathematical Economics, 1:3 (1974), 213–221 | DOI | MR | Zbl