On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria Boolean optimization problem consisting in an efficient choice of a Pareto-optimal portfolio of investor's assets that uses the Savage's minimax risk criteria is considered. Upper and lower attainable bounds of the stability radius of such portfolio with regard to independent changes of elements of a risk matrix are obtained.
@article{BASM_2010_3_a4,
     author = {Vladimir Emelichev and Vladimir Korotkov and Kirill Kuzmin},
     title = {On stability of {Pareto-optimal} solution of portfolio optimization problem with {Savage's} minimax risk criteria},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--44},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/}
}
TY  - JOUR
AU  - Vladimir Emelichev
AU  - Vladimir Korotkov
AU  - Kirill Kuzmin
TI  - On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 35
EP  - 44
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/
LA  - en
ID  - BASM_2010_3_a4
ER  - 
%0 Journal Article
%A Vladimir Emelichev
%A Vladimir Korotkov
%A Kirill Kuzmin
%T On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 35-44
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/
%G en
%F BASM_2010_3_a4
Vladimir Emelichev; Vladimir Korotkov; Kirill Kuzmin. On stability of Pareto-optimal solution of portfolio optimization problem with Savage's minimax risk criteria. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 35-44. https://geodesic-test.mathdoc.fr/item/BASM_2010_3_a4/

[1] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Stability and parametric analysis of discrete optimization problems, Naukova Dumka, Kiev, 1995 (Russian)

[2] Sergienko I. V., Shilo V. P., Discrete optimization problems: challenges, solution techniques, and investigations, Naukova Dumka, Kiev, 2003 (Russian)

[3] Sotskov Yu. N., Sotskova N. Yu., Scheduling theory. Systems with uncertain numerical parameters, UIIP of NAS of Belarus, Minsk, 2004 (Russian)

[4] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in reak combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl

[5] Sotskov Yu. N., Tanaev V. S., Werner F., “Stability radius of an optimal schedule: a survey and recent developments”, Industrial Applications of Combinatorial Optimization, Kluwer Acad. Publ., Dordrecht, 1998, 72–108 | DOI | MR | Zbl

[6] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[7] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search, Interfaces in Computer Science and Operations Research, Operations Research/Computer Science Interfaces Series, 9, Kluwer Academic Publishers, Boston, MA, 1998, 97–148 | DOI | MR

[8] Greenberg H. J., “A bibliography for the development of an intelligent mathematical programming system”, Annals of Operations Research, 65:1 (1996), 55–90 | DOI | Zbl

[9] Emelichev V. A., Kuzmin K. G., “On the stability radius of a vector integer linear programming problem in the case of the regularity norms in the criterion space”, Cybernetics and Systems Analysis, 46:1 (2010), 82–89 | DOI | MR | Zbl

[10] Emelichev V. A., Kuzmin K. G., “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | MR | Zbl

[11] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optimization, 7:1–2 (2010), 48–63 | DOI | MR | Zbl

[12] Emelichev V. A., Karelkina O. V., “Finite cooperative games: parameterisation of the concept of equilibrium (from Pareto to Nash) and stability of the efficient situation Hölder metric”, Discrete Math. Appl., 19:3 (2009), 229–236 | DOI | MR | Zbl

[13] Bukhtoyarov S. E., Emelichev V. A., “On stability of an optimal situation in a finite cooperative game with a parametric concept of equilibrium”, Computer Science Journal of Moldova, 12:3 (2004), 371–380 | MR | Zbl

[14] Emelichev V. A., Kuzmin K. G., “Stability radius of a lexicographic optimum of a vector problem of boolean programming”, Cybernetics and Systems Analysis, 41:2 (2005), 215–223 | DOI | MR | Zbl

[15] Bukhtoyarov S. E., Emelichev V. A., “On quasistability radius of a vector trajectorial problem with a principle of optimality generalizing Pareto and lexicographic principles”, Computer Science Journal of Moldova, 13:1 (2005), 47–58 | MR | Zbl

[16] Markowitz H. M., Portfolio selection: efficient diversification of investments, Blackwell Publ., Oxford, 1991

[17] Markowitz H., “Portfolio selection”, The Journal of Finance, 7:1 (1952), 77–91 | DOI

[18] Steuer R. E., Na P., “Multiple criteria decision making combined with finance: a categorized bibliographic study”, Eur. J. Oper. Res., 150:3 (2003), 496–515 | DOI | Zbl

[19] Savage L. J., “The Theory of Statistical Decision”, J. Amer. Statist. Assoc., 46:253 (1951), 55–67 | DOI | Zbl

[20] Savage L. J., The Foundations of Statistics, Dover Publ., New York, 1972 | MR | Zbl

[21] Wentzel E. S., Operations Research, Sovetskoe radio, Moscow, 1972 (Russian)

[22] Baldin K. V., Risk management, Eksmo, Moscow, 2006 (Russian)

[23] Hohlov N. V., Risk management, UNITY-DANA, Moscow, 2001 (Russian)

[24] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, Journal of Mathematical Economics, 1:3 (1974), 213–221 | DOI | MR | Zbl