On the Diophantine equation xxyyk(y)=zzp
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the existence and the ways of finding some positive integer solutions x,y,z for the equation xxyyk(y)=zzp are studied.
@article{BASM_2010_2_a8,
     author = {Gheorghe M. Tudor and Tudor B{\^\i}nzar},
     title = {On the {Diophantine} equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {121--124},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/}
}
TY  - JOUR
AU  - Gheorghe M. Tudor
AU  - Tudor Bînzar
TI  - On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 121
EP  - 124
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/
LA  - en
ID  - BASM_2010_2_a8
ER  - 
%0 Journal Article
%A Gheorghe M. Tudor
%A Tudor Bînzar
%T On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 121-124
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/
%G en
%F BASM_2010_2_a8
Gheorghe M. Tudor; Tudor Bînzar. On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/

[1] Andreescu T., Andrica D., An Introduction to Diophantine Equations, Gil Publishing House, 2002 | Zbl

[2] Mordell L. J., Diophantine Equations, Academic Press, London–New York, 1969 | MR | Zbl

[3] Sierpinski W., What we know and what we don't know about prime numbers, Bucharest, 1966 (in Romanian) | MR

[4] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=y_k^{y_k}$ (I)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 48(62):2 (2003), 13–18 | MR | Zbl

[5] Tudor Gh. M., “L'équation Diophantienne $(x_1^{x_1})^{m_1}\cdot(x_2^{x_2})^{m_2}\cdot\ldots\cdot(x_k^{x_k})^{m_k}=y_k^{y_k}$ (II)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 49(63):1 (2004), 13–19 | MR | Zbl

[6] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=y_1^{y_1}\cdot y_2^{y_2}\cdot\ldots\cdot y_k^{y_k}$ (III)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 49(63):2 (2004), 1–8 | MR | Zbl

[7] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=w^{w^p}$ (IV)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):1 (2005), 12–18 | MR | Zbl

[8] Tudor Gh. M., “L'équation Diophantienne $x^{x}\cdot y^{y^q}=z^{z^p}$ (V)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):2 (2005), 18–24 | MR

[9] Tudor Gh. M., Bînzar T., “On some exponential Diophantine equations”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):2 (2005), 47–52 | MR | Zbl

[10] Tudor Gh. M., Bînzar T., “On the Diophantine equation $x_1^{x_2^\alpha}\cdot x_2^{x_3^\alpha}\cdot\ldots\cdot x_k^{x_1^\alpha}=w^{w^\alpha}$, $\alpha=\pm1$ (II)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 53(67):1 (2008), 44–49 | MR | Zbl