Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2010_2_a8, author = {Gheorghe M. Tudor and Tudor B{\^\i}nzar}, title = {On the {Diophantine} equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {121--124}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/} }
TY - JOUR AU - Gheorghe M. Tudor AU - Tudor Bînzar TI - On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 121 EP - 124 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/ LA - en ID - BASM_2010_2_a8 ER -
%0 Journal Article %A Gheorghe M. Tudor %A Tudor Bînzar %T On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2010 %P 121-124 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/ %G en %F BASM_2010_2_a8
Gheorghe M. Tudor; Tudor Bînzar. On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a8/
[1] Andreescu T., Andrica D., An Introduction to Diophantine Equations, Gil Publishing House, 2002 | Zbl
[2] Mordell L. J., Diophantine Equations, Academic Press, London–New York, 1969 | MR | Zbl
[3] Sierpinski W., What we know and what we don't know about prime numbers, Bucharest, 1966 (in Romanian) | MR
[4] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=y_k^{y_k}$ (I)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 48(62):2 (2003), 13–18 | MR | Zbl
[5] Tudor Gh. M., “L'équation Diophantienne $(x_1^{x_1})^{m_1}\cdot(x_2^{x_2})^{m_2}\cdot\ldots\cdot(x_k^{x_k})^{m_k}=y_k^{y_k}$ (II)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 49(63):1 (2004), 13–19 | MR | Zbl
[6] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=y_1^{y_1}\cdot y_2^{y_2}\cdot\ldots\cdot y_k^{y_k}$ (III)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 49(63):2 (2004), 1–8 | MR | Zbl
[7] Tudor Gh. M., “L'équation Diophantienne $x_1^{x_1}\cdot x_2^{x_2}\cdot\ldots\cdot x_k^{x_k}=w^{w^p}$ (IV)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):1 (2005), 12–18 | MR | Zbl
[8] Tudor Gh. M., “L'équation Diophantienne $x^{x}\cdot y^{y^q}=z^{z^p}$ (V)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):2 (2005), 18–24 | MR
[9] Tudor Gh. M., Bînzar T., “On some exponential Diophantine equations”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 50(64):2 (2005), 47–52 | MR | Zbl
[10] Tudor Gh. M., Bînzar T., “On the Diophantine equation $x_1^{x_2^\alpha}\cdot x_2^{x_3^\alpha}\cdot\ldots\cdot x_k^{x_1^\alpha}=w^{w^\alpha}$, $\alpha=\pm1$ (II)”, Bul. Şt. al Univ. “Politehnica” din Timişoara, Seria Mat.-Fiz., 53(67):1 (2008), 44–49 | MR | Zbl