Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2010_2_a7, author = {Namita Das and Srinibas Sahoo}, title = {New inequalities of {Hardy--Hilbert} type}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {109--120}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a7/} }
Namita Das; Srinibas Sahoo. New inequalities of Hardy--Hilbert type. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 109-120. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a7/
[1] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, Cambrige, 1952 | MR | Zbl
[2] Krylov V. I., Approximation Calculation of Integrals, Macmillan, New York, 1962 | MR | Zbl
[3] Kuang J., Applied Inequalities, Shangdong Science and Technology Press, Jinan, 2004
[4] Krnic M., Pecaric J., “Extension of Hilbert's inequality”, J. Math. Anal. Appl., 324 (2006), 150–160 | DOI | MR | Zbl
[5] Mitrinovic D. S., Pecaric J. E., Fink A. M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991 | MR | Zbl
[6] Mitrinovic D. S., Analytic Inequalities, Springer-Verlag, Berlin–New York, 1970 | MR | Zbl
[7] Pachpatte B. G., “On some new inequalities similar to Hilbert's inequality”, J. Math. Anal. Appl., 226 (1998), 166–179 | DOI | MR | Zbl
[8] Pachpatte B. G., “Inequalities similar to certain extensions of Hilbert's inequality”, J. Math. Anal. Appl., 243 (2000), 217–227 | DOI | MR | Zbl
[9] Sun B., “Best generalization of a Hilbert type inequality”, J. Ineq. Pure and Appl. Math., 7:3 (2006), Art-113 | MR
[10] Sulaiman W. T., “On Three Inequalities Similar to Hardy–Hilbert's Inequality”, Acta Math. Univ. Comenianae, 76:2 (2007), 273–278 | MR | Zbl
[11] Das N., Sahoo S., “New inequalities similar to Hardy–Hilbert's inequality”, Turk. J. Math., 2009 (to appear)
[12] Yang B., Rassias T. M., “On the way of weight coefficient and research for the Hilbert-type inequalities”, Math. Ineq. Appl., 6:4 (2003), 625–658 | MR | Zbl
[13] Yang B., “Generalization of a Hilbert type inequality and its applications”, Gongcheng Shuxue Xuebao, 21:5 (2004), 821–824 (Chinese) | MR | Zbl
[14] Yang B., “Best generalization of a Hilbert type inequality”, J. Jilin Univ. Sci., 42:1 (2004), 30–34 (Chinese) | MR | Zbl
[15] Yongjin L., Bing H., “Some extensions of Hilbert's type inequality and its application”, J. Ineq. Pure and Appl. Math., 7:2 (2006), Art-61 | MR
[16] Wang Z., Guo D., An Introduction to Special Functions, Science Press, Beijing, 1979