A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~S5
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 59-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of parametrical completeness in the logic of 8-element topological Boolean algebra with trivial open elements is considered. The conditions permitting to determine the parametrical completeness of an arbitrary system of formulas in the mentioned logic are established in terms of 25 parametrical pre-complete classes of formulas.
@article{BASM_2010_2_a3,
     author = {Vadim Cebotari},
     title = {A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {59--66},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/}
}
TY  - JOUR
AU  - Vadim Cebotari
TI  - A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 59
EP  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/
LA  - en
ID  - BASM_2010_2_a3
ER  - 
%0 Journal Article
%A Vadim Cebotari
%T A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 59-66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/
%G en
%F BASM_2010_2_a3
Vadim Cebotari. A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 59-66. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/

[1] Barris S., Willard R., “Finitely many primitive positive clones”, Proc. of the Amer. Math. Society, 101:3 (1987), 427–430 | DOI | MR

[2] Cebotari V., “A criterion for parametrical completeness in the 4-valued extension of modal logic $S5$”, Bul. A. S. a R. M., Matematica, 2001, no. 1(35), 71–77 | MR | Zbl

[3] Church A., Introduction to mathematical logic, Princeton Univ. Press, Princeton, N.Y., 1944 | MR | Zbl

[4] Cohn P. M., Universal algebra, New York–Evanston–London, 1965 | MR

[5] Feys R., Modal Logic, Paris, 1965 | Zbl

[6] Kuznetsov A. V., “On tools for the discovery of non-deducibility or non-expressibility”, Logical Deduction, Nauka, Moscow, 1979, 5–33 (in Russian) | MR

[7] Maksimova L. L., Rybakov V. V., “On the lattice of normal modal logics”, Algebra and Logics, 13:2 (1974), 188–216 (in Russian) | MR | Zbl

[8] Moisil Gr. C., Essais sur les Logiques non chrysippiennes, Bucarest, 1972 | MR | Zbl

[9] Post E. L., “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43 (1921), 163–185 | DOI | MR | Zbl

[10] Post E. L., Two-valued iterative systems of Mathematical logic, Princeton Univ. Press, Princeton, 1941 | MR | Zbl

[11] Rasiowa H., Sikorski R., The Mathematics of Metamathematics, Warszawa, 1963 | MR | Zbl

[12] Ratsa M., “On functional completeness in S5 modal logic”, Researches on non-classical logics and formal systems, Nauka, Moscow, 1983, 222–280 (in Russian) | MR

[13] Scroggs S. J., “Extensions of the Lewis System $S5$”, J. Simb. Logic, 1:4 (1951), 112–120 | DOI | MR | Zbl