Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2010_2_a3, author = {Vadim Cebotari}, title = {A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {59--66}, publisher = {mathdoc}, number = {2}, year = {2010}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/} }
TY - JOUR AU - Vadim Cebotari TI - A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 59 EP - 66 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/ LA - en ID - BASM_2010_2_a3 ER -
%0 Journal Article %A Vadim Cebotari %T A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2010 %P 59-66 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/ %G en %F BASM_2010_2_a3
Vadim Cebotari. A criterion for parametrical completeness in the 8-valued algebraic model of modal logic~$S5$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 59-66. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a3/
[1] Barris S., Willard R., “Finitely many primitive positive clones”, Proc. of the Amer. Math. Society, 101:3 (1987), 427–430 | DOI | MR
[2] Cebotari V., “A criterion for parametrical completeness in the 4-valued extension of modal logic $S5$”, Bul. A. S. a R. M., Matematica, 2001, no. 1(35), 71–77 | MR | Zbl
[3] Church A., Introduction to mathematical logic, Princeton Univ. Press, Princeton, N.Y., 1944 | MR | Zbl
[4] Cohn P. M., Universal algebra, New York–Evanston–London, 1965 | MR
[5] Feys R., Modal Logic, Paris, 1965 | Zbl
[6] Kuznetsov A. V., “On tools for the discovery of non-deducibility or non-expressibility”, Logical Deduction, Nauka, Moscow, 1979, 5–33 (in Russian) | MR
[7] Maksimova L. L., Rybakov V. V., “On the lattice of normal modal logics”, Algebra and Logics, 13:2 (1974), 188–216 (in Russian) | MR | Zbl
[8] Moisil Gr. C., Essais sur les Logiques non chrysippiennes, Bucarest, 1972 | MR | Zbl
[9] Post E. L., “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43 (1921), 163–185 | DOI | MR | Zbl
[10] Post E. L., Two-valued iterative systems of Mathematical logic, Princeton Univ. Press, Princeton, 1941 | MR | Zbl
[11] Rasiowa H., Sikorski R., The Mathematics of Metamathematics, Warszawa, 1963 | MR | Zbl
[12] Ratsa M., “On functional completeness in S5 modal logic”, Researches on non-classical logics and formal systems, Nauka, Moscow, 1983, 222–280 (in Russian) | MR
[13] Scroggs S. J., “Extensions of the Lewis System $S5$”, J. Simb. Logic, 1:4 (1951), 112–120 | DOI | MR | Zbl