On subsemimodules of semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

P. J. Allen [1] introduced the notion of a Q-ideal and a construction process was presented by which one can build the quotient structure of a semiring modulo a Q-ideal. Here we introduce the notion of QM-subsemimodule N of a semimodule M over a semiring R and construct the factor semimodule M/N. It is shown that this notion inherits most of the essential properties of the factor modules over a ring.
@article{BASM_2010_2_a1,
     author = {Reza Ebrahim Atani and Shahabaddin Ebrahimi Atani},
     title = {On subsemimodules of semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--30},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a1/}
}
TY  - JOUR
AU  - Reza Ebrahim Atani
AU  - Shahabaddin Ebrahimi Atani
TI  - On subsemimodules of semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 20
EP  - 30
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a1/
LA  - en
ID  - BASM_2010_2_a1
ER  - 
%0 Journal Article
%A Reza Ebrahim Atani
%A Shahabaddin Ebrahimi Atani
%T On subsemimodules of semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 20-30
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a1/
%G en
%F BASM_2010_2_a1
Reza Ebrahim Atani; Shahabaddin Ebrahimi Atani. On subsemimodules of semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a1/

[1] Allen P. J., “A fundamental theorem of homomorphisms for simirings”, Proc. Amer. Math. Soc, 21 (1969), 412–416 | DOI | MR | Zbl

[2] Ebrahimi Atani S., “The ideal theory in quotients of commutative semirings”, Glasnik Matematicki, 42 (2007), 301–308 | DOI | MR | Zbl

[3] Ebrahimi Atani R., Ebrahimi Atani S., “Ideal theory in commutative semirings”, Buletinul Acad. Sci. Rep. Moldova ser. Math., 2008, no. 2(57), 14–23 | MR | Zbl

[4] Golan J. S., The theory of semirings with applications in mathematics and theoretical computer Science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, 1992 | MR | Zbl

[5] Hebisch U., Weinert U. J., Halbringe – Algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993 | MR | Zbl

[6] Lu C. P., “Prime submodules of modules”, Comment. Univ. St. Pauli, 33 (1984), 61–69 | MR | Zbl

[7] Maze G., Monico C., Rosenthal J., Public key cryptography on semigroup actions, 28 Jan. 2005, arXiv: cs.CR/0501017v2 | MR