Properties of final unrefinable chains of groups topologies
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let G be a nilpotent group and (M,) be the lattice of all group topologies or the lattice of all group topologies in each of which the group G possesses a basis of neighborhood of unit consisting of subgroups. If τ and τ are group topologies from M such that τ=τ0Mτ1MMτn=τ, then kn for any chain τ=τ0τ1τk=τ of topologies from M.
@article{BASM_2010_2_a0,
     author = {V. I. Arnautov},
     title = {Properties of final unrefinable chains of groups topologies},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--19},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a0/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - Properties of final unrefinable chains of groups topologies
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 3
EP  - 19
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a0/
LA  - en
ID  - BASM_2010_2_a0
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T Properties of final unrefinable chains of groups topologies
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 3-19
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a0/
%G en
%F BASM_2010_2_a0
V. I. Arnautov. Properties of final unrefinable chains of groups topologies. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 3-19. https://geodesic-test.mathdoc.fr/item/BASM_2010_2_a0/

[1] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marsel Dekker, inc., New York–Basel–Hong Kong, 1996 | MR | Zbl

[2] Arnautov V. I., Topala A. Gh., “An exaple of ring with non-modular lattice of ring topologies”, Buletinul A. Ş. R. M. Matematica, 1998, no. 2(27), 130–131 | MR | Zbl

[3] Birkgof G., Teoriya reshetok, Nauka, Moskva, 1984 | MR

[4] Burbaki N., Obschaya topologiya, Osnovnye struktury, Moskva, 1958

[5] Grettser G., Obschaya teoriya reshetok, Mir, Moskva, 1982 | MR

[6] Kurosh A. G., Lektsii po obschei algebre, Izd. 2-e, stereotipnoe, Sankt-Peterburg–Moskva–Krasnodar, 2007

[7] Smarda B., “The lattice of topologies of topological $l$-group”, Czechosl. Math. Jour., 1976, no. 26(101), 128–136 | MR | Zbl

[8] Nereshennye voprosy teorii grupp, Izd. 16-e, dopolnennoe, vklyuchayuschee arkhiv reshennykh zadach, Novosibirsk, 2006