On a~product of classes of algebraic systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 106-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper defines a product of classes of algebraic systems and proves that it is a universal class, a quasi-variety or variety if these classes are universal classes, quasi-varieties or varieties, respectively.
@article{BASM_2010_1_a9,
     author = {Vasile I. Ursu},
     title = {On a~product of classes of algebraic systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {106--120},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a9/}
}
TY  - JOUR
AU  - Vasile I. Ursu
TI  - On a~product of classes of algebraic systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 106
EP  - 120
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a9/
LA  - en
ID  - BASM_2010_1_a9
ER  - 
%0 Journal Article
%A Vasile I. Ursu
%T On a~product of classes of algebraic systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 106-120
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a9/
%G en
%F BASM_2010_1_a9
Vasile I. Ursu. On a~product of classes of algebraic systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 106-120. https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a9/

[1] Taylor W., “Caracterizing Mal'cev conditions”, Algebra Universalis, 3:3 (1973), 351–397 | DOI | MR | Zbl

[2] Birkhoff G., “Universal algebra”, Proc. First. Canad. Math. Congr., Montreal, 1945, 310–326 | MR

[3] Mal'cev A. I., Selected works, v. 1, Classical algebra, Nauka, Moskva, 1976, 331–335 (in Russian) | MR

[4] Mal'cev A. I., Algebraic systems, Nauka, Moskva, 1970 (in Russian) | MR

[5] Gorbunov V. A., Theory of quasivarieties of algebraic systems, Siberian school of algebra and logic, Novosibirsk, 1999 (in Russian)