A probabilistic method for solving minimax problems with general constraints
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method proposed in paper solves a convex minimax problem with a set of general constraints. It is based on a schema elaborated previously, but with constraints that can be projected on quite elementary. Such kind of problems are often encountered in technical, economical applied domains etc. It does not use penalty functions or Lagrange function – common toolkit for solving above mentioned problems. Movement directions have a stochastic nature and are built using estimators corresponding to target function and functions from constraints. At the same time every iteration admits some tolerance limits regarding non-compliance with constraints conditions.
@article{BASM_2010_1_a2,
     author = {Anatol Godonoaga and Pavel Balan},
     title = {A probabilistic method for solving minimax problems with general constraints},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--46},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a2/}
}
TY  - JOUR
AU  - Anatol Godonoaga
AU  - Pavel Balan
TI  - A probabilistic method for solving minimax problems with general constraints
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 33
EP  - 46
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a2/
LA  - en
ID  - BASM_2010_1_a2
ER  - 
%0 Journal Article
%A Anatol Godonoaga
%A Pavel Balan
%T A probabilistic method for solving minimax problems with general constraints
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 33-46
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a2/
%G en
%F BASM_2010_1_a2
Anatol Godonoaga; Pavel Balan. A probabilistic method for solving minimax problems with general constraints. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 33-46. https://geodesic-test.mathdoc.fr/item/BASM_2010_1_a2/

[1] Polyak B. T., “A general method for solving extreme problems”, Dokl. Akad. Nauk SSSR, 174:1 (1967), 33–336 (in Russian) | MR

[2] Shor N. Z., Nondifferentiable Optimization and Polynomial Problems, Kluwer Academic Publishers, Netherlands, 1998 | MR | Zbl

[3] Shiryaev A. V., Probability, Nauka, Moscow, 1980 (in Russian) | MR | Zbl

[4] Godonoaga A., “Stohasticheskie shemy otyskanija minimaksa”, Verojatnost' i ee prilozhenija, Sbornik nauchnyh trudov, Kishinev, 1990, 3–13 (in Russian)

[5] Cybernetics, 19:4, 550–559 | DOI | MR | Zbl