Free Moufang loops and alternative algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any free Moufang loop can be embedded in to a loop of invertible elements of some alternative algebra. Using this embedding it is quite simple to prove the well-known result: if three elements of Moufang loop are bound by the associative law, then they generate an associative subloop. It is also proved that the intersection of the terms of the lower central series of a free Moufang loop is the identity and that a finitely generated free Moufang loop is Hopfian.
@article{BASM_2009_3_a9,
     author = {N. I. Sandu},
     title = {Free {Moufang} loops and alternative algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {96--108},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a9/}
}
TY  - JOUR
AU  - N. I. Sandu
TI  - Free Moufang loops and alternative algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 96
EP  - 108
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a9/
LA  - en
ID  - BASM_2009_3_a9
ER  - 
%0 Journal Article
%A N. I. Sandu
%T Free Moufang loops and alternative algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 96-108
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a9/
%G en
%F BASM_2009_3_a9
N. I. Sandu. Free Moufang loops and alternative algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 96-108. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a9/

[1] Chavarriga J., Giacomini H., Llibre J., “Uniqueness of algebraic limit cycles for quadratic systems”, Math. Anal. and Appl., 261 (2001), 85–99 | DOI | MR | Zbl

[2] Jouanolou J. P., Equations de Pfaff algébriques, Lectures Notes in Mathematics, 708, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[3] Cairo L., Llibre J., “Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2”, Nonlinear Analysis, 67 (2007), 327–348 | DOI | MR | Zbl

[4] Goodaire E. G., “Alternative loop ring”, Pub. Math. (Debrece), 30 (1983), 31–38 | MR | Zbl

[5] Chein O., Pflugfelder H. O., Smith J. D. H. (eds.), Quasigroups and Loops: Theory and applications, Helderman Verlag, Berlin, 1990 | MR | Zbl

[6] Goodaire E. G., “A brief history of loop rings”, 15th Brasilian School of Algebra (Canela, 1998), Mat. Contemp., 16, 1999, 93–109 | MR | Zbl

[7] Shestakov I. P., “Moufang loops and alternative algebras”, Proc. Amer. Math. Soc., 132 (2004), 313–316 | DOI | MR | Zbl

[8] Sandu N. I., “About the embedding of Moufang loops in alternative algebras”, Loops' 99 Conference (Jul. 27 – Aug. 1, 1999, Prague), Abstracts, 33–34

[9] Cohn P. M., Universal algebra, Mir, Moscow, 1968 | MR | Zbl

[10] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings that are nearly associative, Nauka, Moscow, 1978 | MR | Zbl

[11] Vasile Ursu, “On identities of nilpotent Moufang loops”, Romanian journal of pure and applied mathematics, 45:3 (2000), 537–548 | MR | Zbl