Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of solutions to the problem $$ \begin{cases} \varepsilon\Big(u''_\varepsilon(t)+A_1u_\varepsilon(t)\Big)+u'_\varepsilon(t)+ A_0u_\varepsilon(t)=f(t),\quad t>0,\\ u_\varepsilon(0)=u_0,\qquad u'_\varepsilon(0)=u_1, \end{cases} $$ in the Hilbert space H as ε0, where A1 and A0 are two linear selfadjoint operators.
@article{BASM_2009_3_a8,
     author = {Galina Rusu},
     title = {Singular limits of solutions to the {Cauchy} problem for second order linear differential equations in {Hilbert} spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {81--95},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a8/}
}
TY  - JOUR
AU  - Galina Rusu
TI  - Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 81
EP  - 95
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a8/
LA  - en
ID  - BASM_2009_3_a8
ER  - 
%0 Journal Article
%A Galina Rusu
%T Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 81-95
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a8/
%G en
%F BASM_2009_3_a8
Galina Rusu. Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 81-95. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a8/

[1] Barbu V., Nonlinear semigroups of contractions in Banach spaces, Ed. Acad. Române, Bucharest, 1974 | Zbl

[2] Martinez C., Sanz M., The theory of fractional powers of operators, Elsevier, North-Holland, 2001 | MR

[3] Perjan A., Singularly perturbed boundary value problems for evolution differential equations, Habilitated Doctoral Thesis, Chişinău, 2008 (Romanian) | Zbl

[4] Perjan A., Rusu G., “Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces”, Annals of Academy of Romanian Scientists. Series on Mathematics and its Applications, 2009, no. 1, 31–61 | MR | Zbl