Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2009_3_a5, author = {N. A. Moldovyan and P. A. Moldovyanu}, title = {Vector form of the finite fields $GF(p^m)$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {57--63}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/} }
TY - JOUR AU - N. A. Moldovyan AU - P. A. Moldovyanu TI - Vector form of the finite fields $GF(p^m)$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 57 EP - 63 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/ LA - en ID - BASM_2009_3_a5 ER -
N. A. Moldovyan; P. A. Moldovyanu. Vector form of the finite fields $GF(p^m)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 57-63. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/
[1] Menezes A. J., Van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1997 | MR | Zbl
[2] Smart N., Cryptography: an Introduction, McGraw-Hill Publication, London, 2003
[3] Information technology – Security techniques – Digital Signatures with appendix. Part 3: Discrete logarithm based mechanisms, International Standard ISO/IEC 14888-3:2006(E).
[4] Koblitz N., A Course in Number Theory and Cryptography, Springer-Verlag, Berlin, 2003 | MR
[5] Menezes A. J., Vanstone S. A., “Elliptic Curve Cryptosystems and Their Implementation”, J. Cryptology, 6:4 (1993), 209–224 | DOI | MR | Zbl
[6] Moldovyan D. N., Moldovyan N. A., A Method for Generating and Verifying Electronic Digital Signature Certifying an Electronic Document, Russian patent No 2369974
[7] Kurosh A. G., Kurs vysshey algebry, Nauka, Moskva, 1971 (Russian) | Zbl