Vector form of the finite fields GF(pm)
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Specially defined multiplication operation in the m-dimensional vector space (VS) over a ground finite field (FF) imparts properties of the extension FF to the VS. Conditions of the vector FF (VFF) formation are derived theoretically for cases m=2 and m=3. It has been experimentally demonstrated that under the same conditions VFF are formed for cases m=4, m=5, and m=7. Generalization of these results leads to the following hypotheses: for each dimension value m the VS defined over a ground field GF(p), where p is a prime and m|p1, can be transformed into a VFF introducing special type of the vector multiplication operations that are defined using the basis-vector multiplication tables containing structural coefficients. The VFF are formed in the case when the structural coefficients that could not be represented as the mth power of some elements of the ground field are used. The VFF can be also formed in VS defined over extension FF represented by polynomials. The VFF present interest for cryptographic application.
@article{BASM_2009_3_a5,
     author = {N. A. Moldovyan and P. A. Moldovyanu},
     title = {Vector form of the finite fields $GF(p^m)$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--63},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - P. A. Moldovyanu
TI  - Vector form of the finite fields $GF(p^m)$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 57
EP  - 63
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/
LA  - en
ID  - BASM_2009_3_a5
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A P. A. Moldovyanu
%T Vector form of the finite fields $GF(p^m)$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 57-63
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/
%G en
%F BASM_2009_3_a5
N. A. Moldovyan; P. A. Moldovyanu. Vector form of the finite fields $GF(p^m)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 57-63. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a5/

[1] Menezes A. J., Van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1997 | MR | Zbl

[2] Smart N., Cryptography: an Introduction, McGraw-Hill Publication, London, 2003

[3] Information technology – Security techniques – Digital Signatures with appendix. Part 3: Discrete logarithm based mechanisms, International Standard ISO/IEC 14888-3:2006(E).

[4] Koblitz N., A Course in Number Theory and Cryptography, Springer-Verlag, Berlin, 2003 | MR

[5] Menezes A. J., Vanstone S. A., “Elliptic Curve Cryptosystems and Their Implementation”, J. Cryptology, 6:4 (1993), 209–224 | DOI | MR | Zbl

[6] Moldovyan D. N., Moldovyan N. A., A Method for Generating and Verifying Electronic Digital Signature Certifying an Electronic Document, Russian patent No 2369974

[7] Kurosh A. G., Kurs vysshey algebry, Nauka, Moskva, 1971 (Russian) | Zbl