On π-quasigroups isotopic to abelian groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 109-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A π-quasigroup is a quasigroup satisfying one of the seven minimal identities from the V. Belousov's classification given in [1]. Some general results about π-quasigroups isotopic to groups are obtained by V. Belousov and A. Gwaramija in [1] and [2]. π-Quasigroups isotopic to abelian groups are investigated in this paper.
@article{BASM_2009_3_a10,
     author = {Parascovia Syrbu},
     title = {On $\pi$-quasigroups isotopic to abelian groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {109--117},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a10/}
}
TY  - JOUR
AU  - Parascovia Syrbu
TI  - On $\pi$-quasigroups isotopic to abelian groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 109
EP  - 117
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a10/
LA  - en
ID  - BASM_2009_3_a10
ER  - 
%0 Journal Article
%A Parascovia Syrbu
%T On $\pi$-quasigroups isotopic to abelian groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 109-117
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a10/
%G en
%F BASM_2009_3_a10
Parascovia Syrbu. On $\pi$-quasigroups isotopic to abelian groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 109-117. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a10/

[1] Belousov V., “Parastrophic-orthogonal quasigroups”, Quasigroups and Related Systems, 14 (2005), 3–51 | MR

[2] Belousov V., Gwaramija A., “On Stein quasigroups”, Soobsh. Gruz. SSR, 44 (1966), 537–544 | MR | Zbl

[3] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (2005), 29–50 | DOI | MR

[4] Bennett F. E., “Quasigroups”, The CRC handbook of combinatorial designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, 1996 | MR