Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2009_3_a1, author = {Vladimir Emelichev and Eberhard Girlich and Olga Karelkina}, title = {Postoptimal analysis of multicriteria combinatorial center location problem}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {13--29}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {en}, url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a1/} }
TY - JOUR AU - Vladimir Emelichev AU - Eberhard Girlich AU - Olga Karelkina TI - Postoptimal analysis of multicriteria combinatorial center location problem JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 13 EP - 29 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a1/ LA - en ID - BASM_2009_3_a1 ER -
%0 Journal Article %A Vladimir Emelichev %A Eberhard Girlich %A Olga Karelkina %T Postoptimal analysis of multicriteria combinatorial center location problem %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 13-29 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a1/ %G en %F BASM_2009_3_a1
Vladimir Emelichev; Eberhard Girlich; Olga Karelkina. Postoptimal analysis of multicriteria combinatorial center location problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 13-29. https://geodesic-test.mathdoc.fr/item/BASM_2009_3_a1/
[1] Ehrgott M., Gandibleux X., “A survey and annotated bibliography of multiobjective combinatorial optimization”, OR Spectrum, 22:4 (2000), 425–460 | DOI | MR | Zbl
[2] Tanino T., Sawaragi Y., “Stability of nondominated solutions in multicriteria decision-making”, Journal of Optimization Theory and Applications, 30:2 (1980), 229–253 | DOI | MR | Zbl
[3] Sawaragi Y., Nakayama H., Tanino T., Theory of Multi-Objective Optimization, Academic Press, Orlando, 1985 | MR | Zbl
[4] Tanino T., “Sensitivity analysis in multiobjective optimization”, Journal of Optimization Theory and Applications, 56:3 (1988), 479–499 | DOI | MR | Zbl
[5] Fiacco A. V., Mathematical Programming with Data Perturbations, Marcel Dekker, New York, 1988 | MR
[6] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, ed. D. L. Woodruff, Kluwer Acad. Publ., Boston, MA, 1998, 97–148 | DOI | MR
[7] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | MR | Zbl
[8] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI | MR | Zbl
[9] Libura M., van der Poort E. S., Sierksma G., van der Veen J. A. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Appl. Math., 87:1–3 (1998), 159–185 | DOI | MR | Zbl
[10] van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0-1 programs”, Discrete Appl. Math., 91:1–3 (1999), 251–263 | MR | Zbl
[11] Sergienko I. V., Shilo V. P., Discrete optimization problems. Problems, methods of solutions, investigations, Naukova dumka, Kiev, 2003 (Russian)
[12] Kozeratska L., Forbes J. F., Goebel R. G., Kresta J. V., “Perturbed cones for analysis of uncertain multi-criteria optimization problems”, Linear Algebra and its Applications, 378 (2004), 203–229 | DOI | MR | Zbl
[13] Libura M., Nikulin Y., “Stability and accuracy functions in multicriteria combinatorial optimization problem with $\Sigma$–MINMAX and $\Sigma$–MINMIN partial criteria”, Control and Cybernetics, 33:3 (2004), 511–524 | MR | Zbl
[14] Libura M., “On the adjustment problem for linear programs”, European Journal of Operational Research, 183:1 (2007), 125–134 | DOI | MR | Zbl
[15] Sotskov Yu. N., Sotskova N. Yu., Scheduling theory. The systems with uncertain numerical parameters, National Academy of Sciences of Belarus, Minsk, 2004 (Russian)
[16] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[17] Emelichev V. A., Krichko V. N., Nikulin Y. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control and Cybernetics, 33:1 (2004), 127–132 | MR | Zbl
[18] Emelichev V. A., Kuzmin K. G., Nikulin Yu. V., “Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem”, Optimization, 54:6 (2005), 545–561 | DOI | MR | Zbl
[19] Emelichev V. A., Kuz'min K. G., “On a type of stability of a multicriteria integer linear programming problem in the case of a monotone norm”, Journal of Computer and Systems Sciences International, 46:5 (2007), 714–720 | DOI | MR
[20] Emelichev V. A., Gurevsky E. E., “On stability of some lexicographic multicriteria Boolean problem”, Control and Cybernetics, 36:2 (2007), 333–346 | MR | Zbl
[21] Emelichev V. A., Kuzmin K. G., “On stability of a vector combinatorial problem with MINMIN criteria”, Discrete Math. Appl., 18:6 (2008), 557–562 | DOI | MR | Zbl
[22] Emelichev V. A., Kuzmin K. G., “Stability criteria in vector combinatorial bottleneck problems in terms of binary relations”, Cybernetics and systems analysis, 44:3 (2008), 397–404 | DOI | MR | Zbl
[23] Emelichev V. A., Platonov A. A., “Measure of quasistability of a vector integer linear programming problem with generalized principle of optimality in the Helder metric”, Buletinul Academiei de Stiinte a Republicii Moldova, Matematica, 2008, no. 2(57), 58–67 | MR | Zbl
[24] Christofides N., Graph theory. An algorithmic approach, Academic Press, New York, 1975 | MR | Zbl
[25] Zambitski D. K., Lozovanu D. D., Algorithms for solving network optimization problems, Shtiintsa, Kishinev, 1983 (Russian) | MR
[26] Mirchandani P., Francis R., Discrete location theory, John Wiley and Sons, New York, 1990 | MR | Zbl
[27] Daskin M. S., Network and discrete location: models, algorithms and applications, John Wiley and Sons, New York, 1995 | MR
[28] Ehrgott M., Multicriteria optimization, Second edition, Springer, Berlin–Heidelberg, 2005 | MR
[29] Emelichev V. A., Stepanishina Yu. V., “Quasistability of a vector nonlinear trajectory problem with the Pareto optimality principle”, Izv. Vusov. Matematika, 2000, no. 12, 27–32 (Russian) | MR | Zbl
[30] Emelichev V. A., Karelkina O. V., “Postoptimal analysis of one lexicographic combinatorial problem with non-linear criteria”, Computer Science Journal of Moldova, 17:1 (2009), 48–57 | MR | Zbl