A note on a~subclass of analytic functions defined by a~differential operator
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 131-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of the Sălăgean differential operator we define a new class BS(m,μ,α) involving functions fAn. Parallel results for some related classes including the class of starlike and convex functions respectively are also obtained.
@article{BASM_2009_2_a8,
     author = {Alina Alb Lupa\c{s} and Adriana C\u{a}ta\c{s}},
     title = {A note on a~subclass of analytic functions defined by a~differential operator},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {131--134},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a8/}
}
TY  - JOUR
AU  - Alina Alb Lupaş
AU  - Adriana Cătaş
TI  - A note on a~subclass of analytic functions defined by a~differential operator
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 131
EP  - 134
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a8/
LA  - en
ID  - BASM_2009_2_a8
ER  - 
%0 Journal Article
%A Alina Alb Lupaş
%A Adriana Cătaş
%T A note on a~subclass of analytic functions defined by a~differential operator
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 131-134
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a8/
%G en
%F BASM_2009_2_a8
Alina Alb Lupaş; Adriana Cătaş. A note on a~subclass of analytic functions defined by a~differential operator. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 131-134. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a8/

[1] Frasin B. A., Darus M., “On certain analytic univalent functions”, Internat. J. Math. and Math. Sci., 25:5 (2001), 305–310 | DOI | MR | Zbl

[2] Frasin B. F., Jahangiri Jay M., “A new and comprehensive class of analytic functions”, Analele Universităţii din Oradea, 15 (2008), 59–62 | MR | Zbl

[3] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, Berlin, 1983, 362–372 | DOI | MR