The cubic differential system with six real invariant straight lines along three directions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 111-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all cubic systems possessing exactly six real invariant straight lines along three directions taking into account their degree of invariance. We prove that there are 6 affine different classes of such systems. For every class we carried out the qualitative investigation in the Poincaré disc.
@article{BASM_2009_2_a7,
     author = {V. Pu\c{t}untic\u{a} and A. \c{S}ub\u{a}},
     title = {The cubic differential system with six real invariant straight lines along three directions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {111--130},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a7/}
}
TY  - JOUR
AU  - V. Puţuntică
AU  - A. Şubă
TI  - The cubic differential system with six real invariant straight lines along three directions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 111
EP  - 130
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a7/
LA  - en
ID  - BASM_2009_2_a7
ER  - 
%0 Journal Article
%A V. Puţuntică
%A A. Şubă
%T The cubic differential system with six real invariant straight lines along three directions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 111-130
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a7/
%G en
%F BASM_2009_2_a7
V. Puţuntică; A. Şubă. The cubic differential system with six real invariant straight lines along three directions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 111-130. https://geodesic-test.mathdoc.fr/item/BASM_2009_2_a7/

[1] Artes J., Llibre J., “On the number of slopes of invariant straight lines for polynomial differential systems”, J. Nanjing University, 13 (1996), 143–149 | MR | Zbl

[2] Artes J., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific Journal of Mathematics, 184:2 (1998), 207–230 | DOI | MR | Zbl

[3] Cozma D., Şubă A., “The solution of the problem of center for cubic differential systems with four invariant straight lines”, Mathematical analysis and aplications (Iaşi, 1997), An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.), 44, suppl. (1998), 517–530 | MR | Zbl

[4] Kooij R. E., “Cubic systems with four real line invariants”, Math. Proc. Camb. Phil. Soc., 118:1 (1995), 7–19 | DOI | MR | Zbl

[5] Llibre J., Vulpe N., “Planar cubic polynomial differential systems with the maximum number of invariant straight lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl

[6] Lyubimova R. A., “About one differential equation with invariant straight lines”, Differential and integral equations (Gorky Universitet), 1997, no. 1, 19–22 (in Russian)

[7] Lyubimova R. A., “About one differential equation with invariant straight lines”, Differential and integral equations (Gorky Universitet), 1984, no. 8, 66–69 (in Russian)

[8] Puţuntică V., Şubă A., “The cubic differential system with six real invariant straight lines along two directions”, Studia Universitatis. Seria Ştiinţe Exacte şi Economice, 2008, no. 8(13), 5–16 | MR

[9] Rychkov G. S., “The limit cycles of the equation $u(x+1)du=(-x+ax^2+bxu+cu+du^2)dx$”, Differentsial'nye Uravneniya, 8:12 (1972), 2257–2259 (in Russian) | MR | Zbl

[10] Suo Guangjian, Sun Jifang, “The $n$-degree differential system with $(n-1)(n+1)/2$ straight line solutions has no limit cycles”, Proc. of Ordinary Differential Equations and Control Theory, Wuhan, 1987, 216–220 (in Chinese) | MR

[11] Şubă A., Cozma D., “Solution of the problem of the center for cubic differential system with three invariant straight lines in generic position”, Qualitative Theory of Dynamical Systems (Universitat de Lleida, Spaine), 6 (2005), 45–58 | DOI | MR | Zbl

[12] Zhang Xiang, Ye Yanqian, “On the number of invariant lines for polynomial systems”, Proc. of the American Math. Soc., 126:8 (1998), 2249–2265 | DOI | MR | Zbl